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ABSTRACT 

In this thesis a systematic control design methodology is introduced for multi-input/multi- 
output systems with multiple saturations. The methodology can be applied to stable and 
unstable open loop plants with magnitude and/or rate control saturations and to systems in 
which state limitations are desired. This new methodology is a substantial improvement over 
previous heuristic single-inpudsingle-output approaches. 

The idea is to introduce a supervisor loop so that when the references and/or disturbances 
are sufficiently small, the control system operates linearly as designed. For signals large 
enough to cause saturations, the control law is modified in such a way to ensure stability and to 
preserve, to the extent possible, the behavior of the linear control design. 

Key benefits of this methodology are: the modified compensator never produces 
saturating control signals, integrators and/or slow dynamics in the compensator never windup, 
the directional properties of the controls are maintained, and the closed loop system has certain 
guaranteed stability properties. 

The advantages of the new design methodology are illustrated by numerous simulations, 
including the multivariable longitudinal control of modified models of the F-8 (stable) and F-16 
(unstable) aircraft. 

Furthermore new stability results and new performance criteria are introduced which 
characterize how saturations can affect negatively the performance of the feedback system. 

Thesis Supervisor: Dr. Michael Athans 
Title: Professor of Systems Science and Engineering. 



Page 3 

ACKNOWLEDGEMENTS 

First, I would like to thank my thesis supervisor, Professor Michael Athans. Without his 

guidance and support the results of this research would not be possible. I feel very fortunate 

not only to have had the opportunity to learn from him, as a student, but also to have associated 

with him as a person. I strongly believe that he is one of the best supervisors one could 

possibly have. 

Next, I am grateful to my thesis readers, Professors Gunter Stein, Lena Valavani, John 

Tsitsiklis and H. Austin Spang III. Their experience and helpful comments proved to be of 

extreme importance for this research. 

In addition, I would like to thank my colleagues at M.I.T. for their friendship and for the 

countless constructive( and destructive) arguments. The experience and knowledge that I gain 

from the association with them is priceless. I am grateful to Alex Gioulekas, Dan Grunberg, 

Ioannis Kyratzoglou, Richard Lamaire, David Milich, Jason Papastavrou, Brett Ridgely, Tony 

Rodriguez, Jeff Shamma, Petros Voulgaris and Jim Walton. I appreciate the help of Fifa 

Monserrate and Lisa Babine, their cheerful attitude made M.I.T. a better place. Also, I would 

like to thank Jane Maloof for always being considerate and helpful. 

Finally, I would like to thank my family for their encouragement and the strong support 

they gave me over my endless academic years. 

This research was conducted at the M.I.T. Laboratory for Information and Decision Systems 

with support provided by the General Electric Corporate Research and Development Center, 

and by the NASA Ames and Langley Research Centers under grant NASA/NAG 2-297. 



Page 4 

TABLE OF CONTENTS 

Page 
ABSTRACT ..................................................................................... 2 

ACKNOWLEDGEMENTS ................................................................... 3 

LIST OF FIGURES .............................................................................. 8 

LIST OF TABLES .............................................................................. 16 

CHAPTER 1 INTRODUCTION 

1.1 

1.2 

1.3 

Overview .................................................................................. 17 

1.1.1 Problem Definition ............................................................. 17 

1.1.2 Contributions of Thesis ....................................................... 19 

Previous Research and Related Literature ............................................. 21 

1.2.1 Analysis of Control System with Multiple Saturations ................... 21 

1.2.2 Design of Control Systems with Multiple Saturations ..................... 22 
. .  Organization of Thesis ................................................................... 23 

CHAPTER 2 . ANALYSIS 

2.1 

2.2 

2.3 

Introduction ............................................................................... 25 

Stability ................................................................................. 26 

2.2.1 Saturation as Sector Nonlinearity ............................................ 26 

2.2.2 Existing Stability Theory ..................................................... 28 

2.2.3 New Stability Results ......................................................... 30 

Perfmance .............................................................................. 38 



Page 5 

2.3.1 The Algebraic System Example .............................................. 40 

2.3.2 Performance Definition ........................................................ 42 

2.4 Concluding Remarks .................................................................... 43 

CHAPTER 3 . MATHEMATICAL PRELIMINARIES 

3.1 

3.2 

3.3 

3.4 

3.5 

3.5 

............................................................................... Introduction 45 

Preliminaries .............................................................................. 45 

Design of a Time-Varying Gain Such That the Outputs of a 

Linear System Remain are Bounded ................................................... 57 

Linear System Remain are Bounded ................................................... 64 

Concluding Remarks .................................................................... 71 

Design of a Time-Varying Rate Such That the Outputs of a 

Introduction to the New Design Methodology ........................................ 69 

CHAPTER 4 CONTROL STRUCTURE WITH THE OPERATOR EG 

4.1 Introduction ............................................................................... 72 

4.2 Description of the Control Structure with the Operator EG ......................... 72 

4.2.1 Stability Analysis for the Control Structure with the EG .................. 75 

4.2.2 Computation ofthe Operator EG ............................................. 77 

4.2.3 Simulation of the Academic Example #1 .................................... 81 

4.2.5 Simulation of a Model of the F8 Aircraft .................................. 101 

115 4.3 Concluding Remarks ................................................................... 



Page 6 

CHAPTER 5 CONTROL STRUCTURE WITH THE OPERATOR RG 

5.1 

5.2 

5.3 

5.4 

Introduction ............................................................................. 117 

Description of the Control Structure with the Operator RG ....................... 117 

5.2.1 

5.2.2 

5.2.3 

Control 

5.3.1 

5.3.2 

5.3.3 

Stability Analysis of the Control Structure with the RG ................. 121 

Computation of the Operator RG ........................................... 130 

Simulation of the F16 Aircraft .............................................. 130 

Structure with the Operators EG andRG .................................. 147 

Description of the Control Structure with the Operators EG and RG .. 148 

Stability Analysis of the Control Structure 

with the Operators EG and RG ............................................. 152 

Simulation .................................................................... 154 

Concluding Remarks ................................................................... 158 

CHAPTER 6 COMPARISONS 

6.1 

6.2 

6.3 

Introduction ............................................................................. 159 

Comparisons our Design Methodology with Conventional 

Antiwindup Designs .......................................................... 160 

Concluding Remarks ................................................................... 179 

CHAPTER 7 RATE SATURATION. RATE/MAGNITUDE AND 

STATE LIMITERS 

7.1 Introduction ............................................................................. 181 

7.2 Rate Saturation .......................................................................... 182 



Page 7 

7.2.1 Control Structure with EG for plants with Rate Saturation .............. 186 

7.2.2 Academic Example ........................................................... 188 

7.2.3 Control Structure with RG for Plants with Rate Saturation ............. 190 

7.3 Ratemagnitude Saturation ............................................................. 195 

7.3.1 Control System with EG for Plants with Rate and 

Magnitude Saturation ......................................................... 196 

7.3.2 Academic Example ........................................................... 197 

7.3.3 Simulation of the Academic Example ..................................... 198 

7.3.4 Control Structure with RG for Plants with Rate 

and Position Saturation ...................................................... 211 

7.4 Limits on the State Variables .......................................................... 212 

7.4.1 Control Structure with EG for Plants with Limits 

on the State Variables ........................................................ 214 

7.4.2 Control Structure with RG for Plants with Limits 

on the State Variables ........................................................ 217 

7.5 Concluding Remarks .................................................................... 220 

CHAPTER 8 CONCLUSION AND FUTURE RESEARCH 

8.1 Conclusion .............................................................................. 221 

8.2 Future Research Directions ............................................................ 222 

REFERENCES .................................................................................. 224 



Page 8 

LIST OF FIGURES 

CHAPTER 2. ANALYSIS 

Figure 2.1: The closed loop system 

Figure 2.2: Saturation element as a sector nonlinearity in a [1,1/p] sector. 

Figure 2.3: Closed loop system for stability analysis 

Figure 2.4: The closed loop system with the saturation modeled as a linear gain and an 

additive signal 

Figure 2.5: Examples of control directions at the input of the saturation ut1, u ' ~ ,  u"1, u " ~  

and at the output of the saturation u', u". 

Figure 2.6: The algebraic system 

Figure 2.7: General structure for the control system 

CHAPTER 3. MATHEMATICAL PRELIMINARIES 

Figure 3.1: 

Figure 3.2: 

Figure 3.3: 

Figure 3.4 

Figure 3.5: 

Figure 3.6: 

Figure 3.7: 

Figure 3.8: 

Output response of a hypothetical system for three different initial conditions. 

Visualization of the function g(x) and the sets Pg and BA,,. 

The BA,c set for the example. 

The BA,c set and an approximation of it B',,, for the example. 

The Basic system for calculating h(t). 

The Basic system for calculating p(t). 

Control structure with the EG operator. 

Control structure with the RG operator. 



Page 9 

CHAPTER 4. CONTROL SYSTEM FOR STABLE PLANTS 

Figure 4.1: 

Figure 4.2: 

Figure 4.2: 

Figure 4.3: 

Figure 4.4: 

Figure 4.5: 

Figure 4.6: 

Figure 4.7: 

Figrue 4.8: 

Figure 4.9: 

The Basic system for calculating X(t). 

Control structure with the EG operator. 

The Basic system for calculating k(t). 

Singular values of the plant in the academic example #1. 

Singular values of the loop transfer function in the academic example #l. 

Closed loop system for the academic example #1 with EG 

State trajectory of the compensator states for the linear system, (r = [.3 .3]T). 

Output response for the linear system, (r = [.3 .3]1). 

Controls in the linear system, (r = [.3 .3JT). 

State trajectory of the compensator states for the system 

with saturation, (r = [.3 .3]1). 

Figure 4.10: Output response for the system with saturation, (r = [.3 .3]1). 

Figure 4.1 1: Controls in the system with saturation, (r = [.3 .3]9. 

Figure 4.12: State trajectory of the compensator states for the system 

with saturation and the EG, (r = [.3 .3]1). 

Figure 4.13: Output response for the system with saturation and the EG, (r = [.3 ,331). 

Figure 4.14: Controls in the system with saturation and the EG, (r = [.3 .3]T). 

Figure 4.15: X(t) in the system with saturation and the EG, (r = [.3 .3]T). 

Figure 4.16: State trajectory of the compensator states for the system 

with saturation and the EG using the approximate B ' A , ~  set, (r = [.3 .3]1). 

Figure 4.17: State trajectory of the compensator states for the system 

with saturation and the EG using the approximate B'*,c set, (r = [.3 .3]T>. 

Figure 4.18: Output response for the system with 

saturation and the EG using the approximate B'A,c set, (r = [.3 .3]1). 



Page 10 

I 

Figure 4.19: Controls in the system with saturation and the EG using 

the approximate B'*,c set, (r = [.3 .3]1). 

Figure 4.20: Output response for the linear system, (r = [0 .3]1). 

Figure 4.21: Controls in the linear system, (r = [0 .3]1). 

Figure 4.22: Output response for the system with saturation, (r = [0 .3]T). 

Figure 4.23: Controls in the system with saturation, (r = [0 .3]T). 

Figure 4.24: Output response for the system with saturation and the EG, (r = [0 .3]T). 

Figure 4.25: Controls in the system with saturation and the EG, (r = [0 .3IT). 

Figure 4.26: h(t) in the system with saturation and the EG, (r = [0 .3]T). 

Figure 4.27: State trajectory of the compensator states for the system 

with saturation and the EG, (r = [0 .3]1). 

Figure 4.28: Singular values of the F8 model. 

Figure 4.29: Singular values of the loop transfer function in the F8 closed loop system. 

Figure 4.30: Closed loop system for the F8 example with EG 

Figure 4.31: Output response for the F8 linear system, (r = [lo 1OIT). 

Figure 4.32: Controls in the F8 linear system, (r = [ 10 1011). 

Figure 4.33: Output response for the F8 system with saturation, (r = [lo 10IT). 

Figure 4.34: Controls in the F8 system with saturation, (r = [lo 10IT). 

Figure 4.35: Output response for the F8 system with 

saturation and the EG, (r = [lo 10IT). 

Figure 4.36: Controls in the F8 system with saturation and the EG, (r = [ lo  

Figure 4.37: h(t) in the F8 system with saturation and the EG, (r = [ lo  

Figure 4.38: Output response for the F8 linear system, (r = [0 511). 

Figure 4.39: Controls in the F8 linear system, (r = [O 511). 

Figure 4.40: Output response for the F8 system with saturation, (r = [0 5IT). 

Figure 4.41: Controls in the F8 system with saturation, (r = [0 511). 

1019. 

10IT). 



Page 11 

Figure 4.42: Output response for the F8 system with 

saturation and the EG, (r = [0 519. 

Figure 4.43: Controls in the F8 system with saturation and the EG, (r = [0 519. 

Figure 4.44: X(t) in the F8 system with saturation and the EG, (r = [0 519. 

CHAPTER 5. CONTROL SYSTEM FOR UNSTABLE PLANTS 

Figure 5.1: 

Figure 5.2: 

Figure 5.3: 

Figure 5.4: 

Figure 5.5: 

Figure 5.6: 

Figure 5.7: 

Figure 5.8: 

Figure 5.9: 

Control structure with the operator RG. 

The Basic system for calculating p(t). 

Control structure with the operator RG. 

Control structure with the operator RG and output disturbances. 

Singular values of the F16 model. 

Singular values of the loop transfer function in the F16 closed loop system. 

Closed loop system for the F16 example with RG 

Output response for the F16 linear system, (r = [0 

Controls in the F16 linear system, (r = [0 1019. 

101’3. 

Figure 5.10: Output response for the F16 system with saturation, (r = [0 1019. 

Figure 5.11: Controls in the F16 system with saturation, (r = [0 1019. 

Figure 5.12: Output response for the F16 system with 

saturation and the RG, (r = [0 1019. 

Figure 5.13: Controls in the F16 system with saturation and the RG, (r = [0 101’3. 

Figure 5.14: p(t) in the F16 system with saturation and the RG, (r = [0 1019. 

Figure 5.15: Output response for the F16 linear system, (r = [2.5 2.519. 

Figure 5.16: Controls in the F16 linear system, (r = [2.5 2.519. 

Figure 5.17: Output response for the F16 system with saturation, (r = [2.5 2.5IT). 

Figure 5.18: Controls in the F16 system with saturation, (r = [2.5 2.519. 

Figure 5.19: Output response for the F16 system with 



Page 12 

saturation and the RG, (r = [2.5 2.539. 

Figure 5.20: Controls in the F16 system with saturation and the RG, (r = [2.5 2.5IT). 

Figure 5.21: r,(t) in the F16 system with saturation and the RG, (r = [2.5 2.5IT). 

Figure 5.22: Output response for the F16 system with 

saturation and the RG, (r = [0 5IT, d = [.5 OIT). 

Figure 5.23: Controls in the F16 system with 

saturation and the RG, (r = [0 5IT, d = [.5 019. 
Figure 5.24: r,(t) in the F16 system with 

saturation and the RG, (r = [0 5IT, d = [.5 OIT). 
Figure 5.25: Control structure with the operator EG & RG 

Figure 5.26: Output response for the F16 system with 

saturation and the EG & RG, (r = [O 5IT, d = [.5 OIT). 

Figure 5.27: Controls in the F16 system with 

saturation and the EG & RG, (r = [O 5IT, d = [.5 OIT). 
Figure 5.28: rQ(t) in the F16 system with 

saturation and the EG & RG, (r = [O 5IT, d = [.5 OlT). 
Figure 5.29: h(t) in the F16 system with 

saturation and the EG & RG, (r = [O 5IT, d = 1.5 OIT). 

CHAPTER 6. COMPARISONS 

Figure 6.1 : Closed loop system for the academic example #2. 

Figure 6.2: Output response for the linear system. 

Figure 6.3: Controls in the linear system. 

Figure 6.4: Output response for the system with saturation. 

Figure 6.5: Controls in the system with saturation. 



Page 13 

Figure 6.6: Output response for the system with saturation and CAW. 

Figure 6.7: Controls in the system with saturation and CAW. 

Figure 6.8: Output response for the system with saturation and MAW. 

Figure 6.9: Controls in the system with saturation with saturation and MAW. 

Figure 6.10: Output response for the system with saturation and the EG. 

Figure 6.1 1: Controls in the system with saturation with saturation and the EG. 

Figure 6.12: h(t) for the system with saturation and the EG. 

Figure 6.13: The closed loop system for the F8 aircraft. 

Figure 6.14: Output response for the F8 system with saturation and MAW, (r = [lo 

Figure 6.15: Controls in the F8 system with saturation and MAW, (r = [lo 

Figure 6.16: Output response for the F8 system with saturation, MAW and CDP, (r = [lo 10IT). 

Figure 6.17: Controls in the F8 system with saturation, MAW and CDP, (r = [ 10 

Figure 6.18: Output response for the F8 system with saturation and the EG, (r = [ lo  

Figure 6.19: Controls in the F8 system with saturation and the EG, (r = [lo 

Figure 6.20: Output response for the F8 system with saturation and MAW, (r = [20 

Figure 6.21: Controls in the F8 system with saturation and MAW, (r = [20 20IT). 

Figure 6.22: Output response for the F8 system with saturation, MAW and CDP, (r = [20 

Figure 6.23: Controls in the F8 system with saturation, MAW and CDP, (r = [20 

Figure 6.24: Output response for the F8 system with saturation and EG, (r = [20 

Figure 6.25: Controls in the F8 system with saturation and the EG, (r = [20 

Figure 6.26: h(t) for the F8 system with saturation and the EG, (r = [20 

1011). 

1019. 

1011). 

101T). 

10IT). 
I 

2019. 

20IT). 

2031). 

20IT). 

20IT). 

20IT). 

CHAPTER 7. RATE SATURATION, RATElMAGNITUDE AND 

STATE LIMITERS 

Figure 7.1 : Closed loop system with rate saturation 



Page 14 

Figure 7.2: 

Figure 7.3: 

Figure 7.4 

Figure 7.5 

Figure 7.6 

Figure 7.7: 

Figure 7.8: 

Figure 7.9: 

Model of the rate saturation 

A sample u(t) signal and the output u'(t) and u"(t) from 

two different rate saturation models. 

The RA,C set for the academic example #l. 

Closed loop structure with the RG operator for plants with rate saturation 

Closed loop system with rate and magnitude saturation. 

The SA,C set for the academic example #l. 

State trajectory of the compensator states for the linear system, (r = [.22 Z I T ) .  

Output response for the linear system, (r = [.22 Z I T ) .  

Figure 7.10: Controls in the linear system with reference (r = [.22 .22]T). 

Figure 7.11: Output response for the system with control magnitude saturation, without control 

rate saturation and with reference (r = [.22 .22]T). 

Figure 7.12: Controls of the system with control magnitude saturation, without control rate 

saturation and with reference (r = [.22 .22IT). 

Figure 7.13: Output response for the system with control magnitude and rate saturation, 

(r = [.22 .22]T). 

Figure 7.14: Controls in the system with control magnitude/saturation, (r = [.22 .22IT). 

Figure 7.15: State trajectory of the compensator states for the system with control 

magnitudehate saturation and the EG, (r = [.22 .22]T). 

Figure 7.14: Output of the system with magnitude/rate saturation and the EG, (r = [.22 .22]T). 

Figure 7.17: Controls in the system with magnitude/saturation and the EG, (r = [.22 .22]T). 

Figure 7.18: h(t) for the system with magnitudehate saturation and the EG, (r = [.22 

Figure 7.19: Output response for the linear system, (r = [0 2.51T). 

Figure 7.20: Controls in the linear system, (r = [0 2.51T). 

Figure 7.19: Output response for the system with only magnitude saturation, (r = [0 2.5IT). 

Figure 7.20: Controls in the system with only magnitude saturation, (r = [0 2.5IT). 

Figure 7.21: Output response for the system with magnitudehate saturation, (r = [0 2.5IT). 

.22IT). 



Page 15 

Figure 7.22: Controls in the system with magnitude/saturation, (r = [0 2.519. 

Figure 7.23: State trajectory of the compensator states fur the system with 

magnitudehate saturation and the EG, (r = [O 2.519. 

Figure 7.24: Output response fur the system With 

magnitudehate saturation and the EG, (r = [0 2.519. 

Figure 7.25: Controls in the system with magnitude/saturation and the EG, (r = [0 2.531). 

Figure 7.26: h(t) of the system with magnitude/rate saturation and the EG, (r = [0 2.531). 

Figure 7.27: The linear closed loop system 



Page 16 

LIST OF TABLES 

CHAPTER 3 

Table 7.1: Applications of the control structure with the EG and/or RG operators 

CHAPTER 4 

Table 4.1: Poles and zeros of the plant 

Table 4.2: Poles and zeros of the compensator 

Table 4.3 Poles and zeros of the F8 model 

Table 4.4 Poles and zeros of the F8 linear compensator 

CHAPTER 5 

Table 5.1 Poles and zeros of the F16 model 

Table 5.2 Poles and zeros of the F16 hear compensator 

CHAPTER 7 

Table 7.1: Applications of the control structure with the EG and/or RG operators for plants 

with rate saturation 

Table 7.2 Applications of the control structure with the EG and/or RG operators for plants 

with state limiters 



Chapter 1 Page 17 

CHAPTER 1 

INTRODUCTION 

1.1 Overview 

1.1.1 Problem Definition 

Almost every physical system has maximum and minimum limits or saturations on its 

control signals. These limits may be on the magnitude and/or the rate of the controls. In 

addition, certain states of the plant should not exceed predefined limits for safety 

considerations. 

A common standard in designing a control system is to linearize the plant, ignore the 

bounds on the controls and/or the specified limits on the states, and then design the controller 

for the resulting linear time-invariant plant. At the end, engineering intuition and extensive 

simulations are used, and the linear controller is adjusted and modified to cope with stability 

and performance problems due to saturations. In this research, the linear design methodology 

is retained, but the control saturations and any desired limits on the states are explicitlv included 

in the design process. 

When a control system is designed for a linear plant and then control saturations are 

introduced, the closed loop system loses some of the key properties that the linear closed loop 

system had. The two most serious problems that occur with the introduction of multiple 

saturations to the otherwise linear closed loop system are those of stability and performance 

degradiztion. 

Often closed loop stabifity is not preserved in the presence of one or more saturations. 

For example, it is well known that global closed loop stability cannot be achieved for unstable 
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plants with saturating actuators. The introduction of saturation nonlinearities in the closed loop 

system causes the reference and disturbance inputs to impact the global stability of the system. 

In the linear case, stability is independent of the size of exogenous inputs. In a system with 

saturations, large reference and/or disturbance signals can cause instabilities. Thus, given a 

plant and a compensator, the designer should be concerned with the size and directions of 

disturbances and references so that the closed loop system will remain stable in the presence of 

these exogenous signals. 

For multivariable systems, a different major problem that arises (because of saturations) 

is the fact that control saturations alter the direction of the control vector. For example, let us 

assume that there are m control signals with m saturation elements. Each saturation element 

operates on its input signal independently of the other saturation elements; as we shall show in 

the analysis chapter, this can disturb the direction of the applied control vector. Consequently, 

erroneous controls can occur, causing degradation with the performance of the closed loop 

system over and above the expected fact that output transients will be "slower". 

Another performance degradation occufs when a linear compensator with integrators is 

used in a closed loop system and the phenomenon of reset-windw appears. During the time of 

saturation of the actuators, the error is continuously integrated even though the controls are not 

what they should be. The integrator, and other slow compensator states, attain values that lead 

to larger controls than the saturation limits. This leads to the phenomenon known as reset- 

windup, resulting in serious deterioration of the performance (large overshoots and large 

settling times.) Many attempts have been made to address this problem for SISO systems, but a 

general design process has not been formalized. No research has been found in the literature 

that addresses and solves the reset-windup problem for MIMO systems. In practice, the 

saturations are ignored in the first stage of the control design process, and then the final 

controller is designed using ad-hoc modifications and extensive simulations. 

A common classical remedy was to reduce the bandwidth of the control system so that 
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control saturation seldom occurred. Thus, even for small commands and disturbances, one 

intentionally degraded the possible performance of the system (longer settling times etc.). 

Although reduction in closed-loop bandwidth by reduction in the loop gain is an "easy" design 

tool, it clearly is not necessarily the best that could be done. Hence, a new design methodology 

is desirable which will generate transients consistent with the actuation levels available, but 

which maintains the rapid speed of response for small exogenous signals (reference commands 

and disturbances). 

The main question is then: what effects do sa turating actuators introduce to the closed 

 loo^ svstem. and how can one desim controllers suc h that the pmb lems that they introduce are 

solved to the e xtent possible. 

1.1.2 Contributions of Thesis 

As explained in the previous section, input saturations are common to most physical 

systems and their effects are not small enough to neglect. This research brings new advances in 

the theory concerning the analysis and a new methodology for the design of control systems 

with multiple saturations. 

In the analysis part, with a new stability result one can specify the sizes of the 

exogenous disturbances and/or references so that in the presence of those exogenous signals 

the closed loop system remains stable. All the current stability results give bounds on the 

control signals to maintain stability. The designer, does not have any direct access to the 

control signals but has knowledge of the disturbances and can define entirely the reference 

signals. This is why our stability result is relevant in design. 

In the analysis part it is also shown how saturations can degrade the performance of the 

system. As was discussed in the previous section, in addition to integrator windups in MIMO 
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systems, the direction of the control signals is very important. Saturations can alter the 

direction of the control signals and thus effect the performance negatively. In the analysis part 

the performance of the nonlinear system is examined and new performance criteria are 

introduced. 

In the design part, a systematic methodology is introduced to design control 

system with multiple saturations. The idea is to design a linear control system ignoring the 

saturations and when necessary to modify that linear control law. When the exogenous signals 

are small, and they do not cause saturations, the system operates linearly as designed. When 

the signals are large enough to cause saturations, the control law is then modified in such a way 

to preserve ("mimic") to the extent possible the responses of the linear design. Our 

modification to the linear compensator is introduced at the e m r  (Error Governor) and/or the 

reference signals (Reference Governor). 

The methodology can be applied to stable and unstable open loop plants with magnitude 

and/or rate control saturations and to systems in which state limitations are desired. The main 

benefits of the methodology are that it leads to controllers with the following properties: 

(a) The signals that the modified compensator produces never cause saturation. The 

nonlinear response mimics the shape of the linear one with the differena that its speed 

of response may be, as expected, slower. Thus the output of the compensator (the 

controls) are not altered by the saturations. 

(b) Possible integrators or slow dynamics in the compensator never windup. That is 

true because the signals produced by the modified compensator never exceed the limits 

of the saturations. 

(c) For closed loop systems with stable plants finite gain stability is guaranteed for 

any reference and/or disturbance. For closed loop systems with unstable plants BIBO 

stability is guaranteed for any reference. A set of disturbances is given such that any 

disturbance from that set will not Violate the BIBO stability of the closed loop system. 
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(d) The on-line computation required to implement the control system is minimal 

and realizable in most of today's microprocessors. 

The main disadvantage of our new design methodology is due to its severe off-line 

computational requirements. Effectively, one must conduct and store a high-dimensional 

surface whose dimension is that of either the dynamic compensator for stable plants or of the 

compensator and the plant for unstable plants. The algorithms are straight-forward, but they 

can demand a significant amount of CPU time (off-line) for high-dimensional applications. 

Another shortcoming for unstable plants is that the state variables of the plant are needed 

in real time for the implementation of the logic. 

1.2 Previous Research and Related Literature 

1.2.1 Analysis of Control Systems with Multiple Saturations 

In recent years complete linear multivariable analysis and design methodologies for 

feedback control has been developed. Such methodologies are the LQR, LQG, LQGLTR, H2 

[ 1]-[5] and the €L [6]. These methodologies, especially the LQGLTR, have been applied to 

many specific examples in process control, aerospace systems and elsewhere. The designs 

were successful as far as the performance of the linear closed loop system was Concerned [7]- 

[ 101. However, major problem that one can observe in many of those linear designs is the size 

of the controls and the potential saturation problem. From the research indicated above, one can 

conclude that having saturations in the linear control system can be a problem of great 

importance to control engineers. 

As far as the theory is concerned, a great amount of work has been done on the stability 
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of SISO systems with sector nonlinearities. If the saturation is considered as a sector 

nonlinearity, there are stability criteria as the Popov and Circle criteria [ 1 11-[ 141 that can be 

exploited. An extension for MIMO systems is the Multilmp circle criterion [15]. Of course, 

Lyapunov stability theory is always applicable [ 161 and [ 171. The problem with most of these 

stability criteria is that they give bounds on specific signals in the control system, but it is not 

known what kind of commands or disturbances will cause those signals to exceed the bounds. 

Hence, they cannot be used directly to influence the design methodology. 

i 

One way to design controllers for systems with bounded controls, would be to solve an 

optimal control problem; for example, the time optimal control problem or the minimum energy 

problem etc. The solution to such problems usually leads to a bang-bang feedback controller 

[MI. Even though the problem has been solved completely in principle, the solution to even the 

simplest systems requires good modelling, is difficult to calculate open loop solutions, or the 

resulting switching surfaces are complicated to work with. For these reasons, in most 

applications the optimal control solution is not used. 

Because of the problems with optimal control results, other design techniques have been 

attempted. Most of them are based on solving the Lyapunov equation and getting a feedback 

which will guarantee global stability when possible or local stability otherwise [19]-1221. The 

problem with these techniques is that the solutions tend to be unnecessarily conservative and 

consequently the performance of the closed loop system may suffer. For example, when global 

stability is guaranteed, it is often required that the final open loop system is strictly positive-real 

with all the limitations that such systems possess. 

Attempts to solve the reset windup problems when integrators are present in the forward 

loop, have been made for SISO systems [23]-[28]. Most of these attempts lead to controllers 
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with substantially improved performance but not well understood stability properties. As part 

of this research, an initial investigation was made on the effects on performance of the reset 

windups for MIMO systems [29] showing potential for improving the performance of the 

system. A simple case study was also recently conducted on the effects of saturations to MIMO 

systems where potential for improvement in the performance was demonstrated [30]. 

There also exists a theory for general nonlinear control systems [3 11-[34] which either 

does not include hard nonlinearities such as saturations or the theory is general and, perhaps, 

too conservative to use in practice. 

One can see that many engineers have tried to solve the problems that saturation 

introduces in many different ways, and that there axe many bits and pieces of results that can be 

very useful. The bottom line is that there does not exist a systematic methodology for 

designing MIMO control system for systems with multiple saturations and engineers still use 

ad-hoc methods to resolve the problems that saturations introduce. 

1.3 Organization of Thesis 

In addition to the introductory chapter this thesis is organized in 7 chapters (chapter 2 to 

chapter 8). Chapter 2 contains the analysis of systems with saturations, which includes stability 

and performance analysis. Chapter 3 is the introduction to the design methodology with 

mathematical preliminaries and all the tools that are needed for the design methodology. 

Chapter 4 introduces the design methodology for control systems with stable plants including 

the control structure, the properties of the control system and some numerical examples. 

Chapter 5 introduces the control design for systems with unstable plants, including the control 

structure, the properties of the new control system and a numerical example. In Chapter 6 the 

new design methodology is compared with some ad-hoc extensions of SISO antiwindup 

techniques to MIMO systems. Chapter 7 discusses the case where rate and/or magnitude 
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saturation are present and the case where state limitations are introduced. Finally, chapter 8 

contains concluding remarks and directions for future research in this area. 
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CHAPTER 2 
ANALYSIS 

2.1 Introduction 

This chapter contains the analysis of control systems with multiple magnitude saturations 

at the control signals. It involves the analysis of the stability and performance of such systems. 

In the stability part, one of the existing methods, the multiloop circle criterion, will be 

described and its usefulness and its limitations will be analyzed. Then a new stability result will 

be developed that yields bounds on the exogenous signals, i.e. references and disturbances, 

such that the closed loop system remains BIB0 stable when signals within those bounds are 

applied. 

In the performane part, an analysis will be given on why and how the multiple 

saturations affect the direction of the control vector and consequently, the performance of the 

control system. Then performance objectives will be defined for the nonlinear system. The goal 

is to "mimic", to the extent possible, the responses of the control system without the 

saturations (linear system) even when the saturations are present. 

Without loss of generality one can assume that each element h(t) of the control vector 

u(t) = [ ul(t) . . . g(t)lT has saturation limits fl and the saturation operator can be defined as 

follows: 

1 u;(t) 2 1 

-1 s Ui(t) I 1  

-1 Ui(t) I -1 
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- 
Figure 2.1 shows the closed loop system with the saturation element at the controls. The 

compensator K(s) is designed using linear control system techniques and it is assumed that the 

closed loop system without the saturations (the linear system) is stable with "good" properties. 

Figure 2.1: The closed loop system 

The analysis results will be introduced for square systems, i.e. v(t), u(t), y(t) E Rm. Similar 

results can be proven for nonsquare systems by following the same techniques as the ones that 

will be described in this chapter. 

2.2 Stability 

2.2.1 Saturation as Sector Nonlinearitv 

Since the system of concern (shown in figure 2.1) has a linear part (G(s)K(s)) and a 

nonlinear part (saturations) one can take advantage of the special structure and use available 
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stability criteria such as the circle and multiloop criteria. The circle criterion can be used for 

SISO systems if the saturation is to be taken as a sector nonlinearity. Similarly, the multiloop 

criteria can be used for multiple saturations. 

A continuous function fi R j R  with f(0) = 0 is said to belong to the sector [a,b], a < b 

if 

Consider the saturation in one of the channels of the controls ui(t). The sector that 

contains the saturation is defined by the slopes [l,O]. Many times it is difficult or impossible to 

prove global stability by using the whole sector. In such a case, local stability can be proven if 

the sector nonlinearity belongs in a smaller sector [l,a] where a > 0. 

Figure 2.2: Saturation element as a sector nonlinearity in a (l,l/pi) sector. 
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If one assumes that the controls to the plant are always less than pi (lui(t)l 5 pi), then one 

can say that the saturation belongs in a sector [ l,l/pi]. Figure 2.2 shows part of the saturation 

inside the sector [l,l/pi]. The problem then becomes how to find what kind of references and 

disturbances will force the controls to remain bounded ( lq(t)l S pi ). 

2.2.2 Existine Stability Theory 

There exists an extensive theory on the stability of nonlinear systems, e.g. the Lyapunov 

stability theory [16J,[17]. Most of the theory can be applied to general nonlinear systems and it 

is too conservative for the saturation case. For sector nonlinearities some more specific stability 

criteria as the Popov, the circle and the multiloop circle criteria are applicable. Here only the 

multiloop criterion will be stated, the proof is given in [15]. The Popov and circle criteria give 

results similar in nature to those obtained via the multiloop circle criterion. 

In the multiloop circle criterion each sector for each of the saturations is defined by a 

center and a radius. More specifically, assume that the closed loop system is defined by a linear 

system T(s) (i.e. K(s)G(s)) connected with a nonlinearity f(.) as shown in figure 2.3. For this 

research the nonlinearity f(.) will be a diagonal matrix with saturations fi(ui(t)) corresponding 

to each control q(t). Each saturation belongs to a sector as in figure 2.2 with the following 

center and radius Ri. 

C i + R i = l  + L 
2 (2.3) 
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1 Ci-Ri  = - - 
Pi 2 

where e > 0, and e can be arbitrarily small. 

(2.4) 

T(s) = K(s)G(s) . 
Figure 2.3: Closed loop system for stability analysis. 

The multiloop circle criterion states that the closed loop system is extended stable if : 

1. The closed loop system is stable if the nonlinearities are replaced by their centers Ci 

2. The following is true for all frequencies. 

CJ max [R T ( j  0 )  [I+ C T (j o)]-'] I 1  V o (2.5) 

where C and R are matrices with diagonal elements Ci and R, respectively. 

If Ci = 1 and Ri = 0 then condition 2 of the multiloop circle criterion is the same as 

condition 1 which corresponds to having a linear gain of I rather than a sector nonlinearity. The 

sector with Ci = 1/2 and Ri = 1/2 will include the whole saturation element and if the conditions 

of the criterion are met then the closed loop system will be extended stable. If global 
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stability cannot be proven then a smaller sector has to be chosen (Le. [l,l/pi] where pi< -) 

and pi has to be small enough (it is known that one exists, pi = 1) so that the conditions of the 

criterion are met. Thus, the multiloop circle criterion can be used to define pi for 

Effectively by defining the pi, the bounds in the controls for each channel are defined. 

stability. 

Even though control bounds pi can be defined by using the multiloop circle criterion, one 

does not know what kind of exogenous signals (references and disturbances) will violate these 

control bounds. As was previously stated, the objective is to define exogenous signals to 

insure that the bounds in the controls are not violated. 

2.2.3 New Stability ResulQ 

The objective here is to fim, the relationship between bounds in the references and 

disturbances and bounds in the controls. Assume that the relationship of the controls and the 

saturated controls is given by the following 

For analysis purposes, once all the pi's are fixed, one can replace each saturation element 

fi(ui(t)) by a linear gain Ci(pi) and an additive signal u'i(t). Then, each saturated control is 

given by 

Define the matrix C(p) and the vector u'(t) as follows: 
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Then, in compact form 

The substitution given in eq. (2.9) is not a linearization; it is an exact modelling, where 

the signal u';(t) captures the difference between the us;(t) and the output of the linear gain 

Ci(p). Notice in the substitution given in eq. (2.9) the u'(t) signals depend on the choice of 

C(p). Figure 2.4 shows the closed loop system with the substitution of eq. (2.9). 

Figure 2.4: The closed loop system with the saturation modeled 

as a linear gain and an additive signal 

If lui(t)l I pi Vt, i, then each saturation is a sector nonlinearity in the [l/pi ,1] sector.With 
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the linear gain C(p), instead of the saturation, the closed loop system becomes linear and thus 

easier to analyze. C(p) can be chosen to be any linear gain with elements Ci(p) in the sector 

[ l/pi ,1]. Under this model each uIi(t) is an L, signal with the following bound. 

1 - 5 Ci(pi) I 1 
ll@pi Pi 

llu'i(t)ll OD I max I Ci(q)q-1 I , pi 2 1 (2.10) 

The problem now is to ensure that lui(t)l S pi Vty i. From the following theorem one can 

get L, bounds for the references r(t) such that, when the references belong to the specified 

subset of L, space, the closed loop system shown in figure 2.1 is BIB0 stable. 

Theorem 2.1 : 

With zero initial conditions the closed loop system shown in figure 2.1 with d,(t) = 0 and 

d,(t) = 0 will have a bounded output for references that satisfy the following condition for 

some C(p) and pis. 

llhlllll . . . . . llhlm Ill 

where 
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2 jhlj(t-z) rj(z) dz 
j=l 0 

+ . . . . . . . . . . . . . . .  

H(s) = ............. = [ I+K( s)G( s)C(p)]"K( s) (2.12) 1 h,,(s) * * hlm(S) 

hm 1(s) hm (SI 

............. = [I+K(s)G(s)C(p)]"K(s)G(s) (2.13) I qJs) ' ' * * * q,,(s) 

qml(s) * - * ' qmm(s) 

0 0 

where h..(t) and % (t) are the impulse responses of h..(s) and 9 (s) respectively, and 
?1 .j 1J *j 

Ilrillm = sup Iri(t)l 
t 

(2.14) 

(2.15) 

Proof: 

By using the saturation model given in eq. (2.7) one can compute the control u(t) by 

u(t) = I 2 i h m  j(t-z) rj(z) dz 
j=l 0 

I jqlj(t-z) u;(z) dz 
j=l 0 

. . . . . . . . . . . . . . .  (2.16) I 2 jqrn j(t-z) d.(z) dz 
j=l 0 
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By using the triangle inequality one can bound the controls ui as shown in eqs. (2.17)- 

(2.21). 

t m 
lu.(t)l 1 5 jh..(t-z)l 1J lrj(z)l dz + 2 jlqij(t-z)l lu>(z)I dz (2.18) 

j=l  0 j=l  0 

t m 
lu.(t)l I jh..(t-~)l Ilr.(z)llmdz + 2 jlqij(t-z)l Ilu;(z)llmd~ (2.19) 

1 1J J 
j=l  0 j=l 0 

m m 

Ilu.(t)llm 1 5 2 bhij(z)l dz llrj(t)llm + 2 bqij(z)l dz llu>(t)llm (2.20) 
j=l 0 j=l 0 

m m 

Ilu.(t)llm 1 5 C 11hi]Il Ilr.llm J + Ilqi]ll llu'.ll J -  
j=l j= 1 

(2.21) 

In order for the control to belong in a sector it is required that the controls are bounded. 

m m 

Ilu.(t)ll 1 -  < c llhi/ll Ilr.llm J + c llqi]ll Ilu'.llm J I pi 
j= 1 j=l 

(2.22) 

(2.23) 
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Ilu'lllm llqlllll . . . . . llqlmlll 

llq& . . . . . 1 1 ~ 1 1 1  Ilu'mlloo 

llhlllll . . . . . llhlmlll 

llhmllll . . . . . Ilhmlll 

Itrlllm [ . . . . . . . . . . . . . ]!Lili]+[ . . .. . .. . .. ... ][ . .. P1 

- s -  .. - (2.24) 

p, - 

1111 

One can use this result to define a control limit p and a bound on the references Ilr(t)lloo 

such that for every r(t) within the predefined bounds the controls will never exceed the limit p 

and thus the closed loop system will be BIB0 stable. In theorem 2.1 there are many different 

combinations of Ilri(t)lloo that can satisfy the inequality (2.1 1). In a specific design the control 

engineer should evaluate the references and choose the best Ilri(t)lloo. 

Corollarv 2.1 : 

With zero initial conditions the controls in the closed loop system shown in figure 2.1 

will never saturate (lui(t)l 5 1 Vi, t) if the reference r(t) is such that 

llhlllll . . . . . llhlm Ill 1 

.. 
1 m m  1 m -  

where Ilhijlll are defined as in theorem 2.1 with C(p) = I 

(2.25) 

Proof: 

The proof of this corollary it follows from theorem 2.1 when pi = 1, Vi. In such a case 

uli(t) = 0, Vi and then the corollary 2.1 follows from theorem 2.1. 
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llh$ll llrjllm = 1 for some i ,  
j= 1 
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(2.26) 

then there exists a reference signal r(t) that if applied will lead to a conml ui(t) = 1. To be more 

specific consider the following reference signal 

f(t) = [ q(t) - - - ~,.,.,(t)]~ where rj(t) = sign(hij(t)), Vj 

By using the reference specified in eq. (2.27) the following is true. 

m 

ui(t) = llh..ll Ilrjll = 1 
ij 1 - 

j= 1 

(2.27) 

(2.28) 

Now that the simple problem with the references being the only exogenous signal has 

been solved, let us try to find out what happens when input and output disturbances are 

present. Assume that input disturbances d,(t) and output disturbances d,(t) are entering the 

system as shown in the following equations (see also figure 2.1) 

(2.29) 

(2.30) 

Then the following corollary incorporating the input and output disturbances can be proven. 
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Ilrlllm+lldolllm llqlllll . llqlmlll llu'lllm+lldillll P1 

(2.3 1) ........ < . .  . . . . . . .  -+[ . ........ -- - 

Ilrmllm+lldmllm llqmllll . Ilqmlll Ilu',llm+lldhll1 p, - - - -  - -  e 

corollarv: 
With zero initial conditions, the closed loop system shown in figure 2.1 will remain 

BIBO stable for references and disturbances that satisfy the following condition for some C(p) 

and pis. 

where hij and sij are defined as in theorem 2.1, and doj and &j are the components of the 

output disturbance vector d,(t) and input disturbance vector d,(t), respectively. 

Proof: 

The proof of corollary 2.2 follows from theorem 2.1. It should be pointed out that the 

input disturbances enter the loop at the controls, which is the same point where the u'(t) 

signals enter the loop. Similarly, the output disturbances enter the loop at the same point as the 

references. Thus it is clear why the proof of this corollary follows from theorem 2.1. 

///I 

From corollary 2.2 one can see that for BIBO stability there is a tradeoff between the 

disturbances di(t), d,(t) that can be rejected and the references r(t) that can be followed. For 

example, in eq. (2.30) the Iki(t)llm and lldoi(t)llm enter the equation in a similar manner and the 

only constraint that one can obtain is upon Ilri(t)llm + lldoi(t)llm. 
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From the theorem and the corollaries given in this section one can define L, bounds for 

the references and/or disturbances so that the output of the system remains bounded in the 

presence of exogenous signals that belong in the set defined by the L- bounds. The results of 

this section will be used in chapter 5 for the stability analysis of the new design methodology 

which is presented there. 

2.3 Performance 

The purpose of this section As to analyze the performance problems in a system with 

saturations and to define performance objectives. 

There are well developed methods fur defining performance criteria and for designing 

linear closed loop systems which meet the perfomance requirements. It would then be 

desirable, whenever the closed loop system operates in the linear region, to meet the a priori 

performance constraints (because it easy to define them and easy to design control systems 

satisfying these constraints). When the system operates in the nonlinear region new 

performance criteria have to be defined and new ways of achieving the desired performance 

must be developed. 

There are two major problems that multiple saturations can introduce to the performance 

of the system: (a) the reset windup problem, and (b) the fact that multiple saturations change 

the direction of the controls. 

When the linear compensator contains integrators and/or slow dynamics reset windups 

can occur. Whenever the controls are saturated the error is continuously integrated and this can 

lead to large overshoots in the response of the system. It is obvious that if the states of the 

compensator were such that the controls would never saturate, then reset windups would never 

appear. See references [26] and [27] for additional discussion of the reset windup problem. 
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Almost every current design methodology for linear systems inverts the plant and 

replaces the open loop system with a desired design loop. The inversion is done through the 

controls with signals at specific frequencies and directions. The saturations alter the direction 

and frequency of the control signal and thus interfere with the inversion process. The main 

problem is that although both the compensator and the plant are multivariable highly coupled 

systems, the saturations operate as SISO systems. Each saturation operates on its input signal 

independentry from the other saturation elements. 

To see exactly what happens assume as an example that in a two input system the control 

signal at some time to is uV1 = [ 3 

that the direction of the U ' ~  signal at time to is altered. In fact, any input control signal 

u = [ u1 

u2 2 1. Figure 2.5 shows an illustration of four different control directions u'1, u'2, u"1, u"2 

which are mapped at only two directions u' and u" . 

1.1 IT the saturated signal will be u' = [ 1 1 IT. Notice 

u2 3T will be transformed through the saturation to us = [ 1 1 JT if u1 2 1 and 

u'2 4 
4' 

1 

u 1  

-1 

Figure 2.5: Examples of control directions at the input of the saturation 

ut1, uV2, u " ~ ,  and at the output of the saturation u', u". 
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e U 
+ K -  

Since the saturations can alter the direction of the control signals, and in effect disturb the 

compensator/plant inversion process, the logical question to ask is, under what conditions the 

linearly designed compensator that inverts (or partially inverts) the linear plant also inverts the 

plant when the saturations are present. To understand the issues let us consider an algebraic 

system. 

c 

Y 
sat G 

2.3.1 The Algebraic Svstem Example 

Consider the algebraic system in figure 2.6. Both K and G are real matrices with 

K = G-'. The problem is how to find the K mamces that inverts the mamx G with the 

saturation element sat@). The elements of figure 2.6 are defined as follows 

G : U,E Rm + YE Rm, assume G-' exists 

K :  eERm + U E R ~  

rh where us, y, e, u are vectors with u,i, yi, ei, ui as their i component respectively. 

1 when ui > 1 

when Iui15 1 

\ -1 when ui < -1 

(2.32) 

(2.33) 

(2.34) 

Figure 2.6: The algebraic system 
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The output y in figure 2.6 is given by the following 

y = Gsat(Ke) 

G-'y = sat(Ke) 

G-'y = sat( G-'e) 

(2.35) 

(2.36) 

(2.37) 

For the matrix K = G-' to invert G in the system shown in figure 2.6, one can choose a 

scaling h for every input vector e such that 

(2.38) 

Then from eq. (2.37) the following is true 

y = Gsat(G-'he) = GG-'he = he (2.39) 

The modification shown in eq. (2.39) keeps the direction of the output y the same as the 

one of the input e and the only difference is a scaling of h in the output y. Because of the 

nonlinear element sat@) it is impossible to find K to invert G for all the inputs e€ Rm . The 

scaling h is necessary so at least the direction of the output y is preserved and is the same as the 

input direction e. 

The main problem in this simple algebraic problem is that the sat@) element alters the 

direction of the u vector while transforming it to the us vector. In addition, the nonlinear 

mapping of sat@) is not invertible. For example, assume that u, use , then the vector 

[ 2 

again to [ 1 

2 

1IT is transformed to [l 1IT altering the direction, and the vector [3 1IT is transformed 

1IT, so the noninvertibility is apparent. 
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After the analysis in the algebraic problem let us try to analyze the performance problem 

in the dynamic system. The system in question is the original closed loop system shown in 

figure 2.1 where the compensator and the plant are dynamic systems. Problems in performance 

can occur for the following two reasons: (a) the multiple saturations change the control vector 

direction and/or (b) the compensator has integrators or slow dynamics so that windups can 

OCCUT. 

Let us assume for a second that the reference and/or the error were such that the controls 

in the closed loop system never saturate. Then, if the compensator was designed to invert or 

partially invert the plant the inversion process would not be disturbed. At the same time the 

integrators and slow dynamics of the compensator would never windup. 

To solve the performance problem let us assume that two nonzero operators are added to 

the system. The first operator O1 is applied to the error signals and for convenience purposes it 

will be called Error Governor (EG) and the second operator O2 is applied in the reference 

signals and it will be called Reference Governor (RG). 

u = KO,e 

e = 0 2 r - y  

(2.40) 

(2.41) 

The two nonzero operators can be chosen, ifpossibte, so that the control u(t) never 

saturates, i.e. Ilu(t)ll, I 1, for any reference and/or disturbances. It is also desired that the Ole 

and 02r signals are "close" to the e(t) and r(t) signals respectively. In Chapters 3-5 the two 

operators will be defined in detail. Figure 2.7 shows the closed loop system with the two 

added operators. 



I 
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compensator saturation Plant 

Figure 2.7: General structure for the control system 

Effectively, with the introduction of the EG and RG operators, the saturation is 

transferred from the controls to other points in the loop where it makes the control analysis and 

design process easier. 

As was discussed previously, the selection of the EG and RG is such that the controls 

will never saturate; and if, for example, the compensator was designed to invert or partially 

invert the plant, then the inversion process will not be distorted by the saturation and GsatK 

will remain linear and equal to GK. In the closed loop system with the operators 0, and 0, 

the compensator will never cause windups. The integrators and slow dynamics of the 

compensator will never cause the controls to exceed the limits of the saturation and thus 

windups never occur. 

2.4. Concluding Remarks 

In this chapter certain issues about the stability and the performance of a control system 

with multiple saturations were discussed. 

As far as the stability is concerned, a new stability criterion was introduced where L, 

reference and disturbance spaces were defined so that for any exogenous signal (reference or 

disturbance) in those spaces the closed loop system will remain BIB0 stable. 
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As far as the performance is concerned, at first, the performance problems that 

saturations introduce were analyzed. These problems can be integrator windups and the control 

direction alteration by the multiple saturations. To solve these problems new performance 

objectives were introduced. The idea is to somehow prevent the controls from saturating so that 

the compensator can invert or partially invert the plant as designed. 

The introduction of the two operators, the Errar Governor (EG) and the Reference 

Governor (RG), will address these stability and performance concerns; in chapters 3-5, it will 

be shown how to design those two operators in detail. 
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CHAPTER 3 

MATHEMATICAL PRELIMINARIES 

3.1 Introduction 

This chapter is an introduction to the new design methodology. Some necessary 

mathematical preliminaries will be given and two basic problems will be introduced. The two 

basic problems will be solved and their solution will lead to the design of the two operators that 

were introduced in chapter 2, i.e. the Error Governor (EG) and the Reference Governor (RG). 

The design of the operator EG involves the design of a time-varying gain such that the 

outputs of a linear system remain bounded. The design of the operator RG involves the design 

of a time-varying rate such that the outputs of a linear system remain bounded. 

3.2 Preliminaries 

Consider the following linear time invariant system 

;(t) = Ax(t) 

x(0) = XO 

YO) = cm 
y(xo,t) = CeAtxo 

A E RnX", x(t) E R" 

c E IRmxn, y(t) E Rm 

where eAt is the state transition matrix (matrix exponential) for A 

In the rest of this section certain definitions and facts will be presented. These definitions 
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and facts wil l  be used for the design of the operators EG and RG. 
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Definition u: 
The scalar-valued function g(x) is defined as follows: 

This function g(x0) is not necessarily differentiable at all points in R'. One can easily see 

the possibility of having a nondifferentiable g(q) when Ilyi(xo,t)ll,= lyj(xo,t')l, where t+t' 

and/or i#j. In figure 3.1 three responses are shown which correspond to a fictitious system 

with three initial conditions. For the initial condition ~0 the system has a response with the 

maximum value occurring at times tl and tp Then, for a smaU deviation in the initial condition, 

x,, + v, the maximum in the response occurs at time tl and for another small deviation in the 

initial condition, ~0 - w, the response has its maximum value at t2 For such a system it is 

obvious why the g(q) may not be differentiable at XO. 

c 

> 
I t2 T h e  (sec.) 

Figure 3.1: Output response of a hypothetical system for three different initial conditions. 
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The Jacobian matrix of g(x) is defmed as follows: 

where each XE lRn is given by 

......... % XJ (3.7) 

Theorem 3.1: 

Let hi(A) be an observable mode of (A,C) and let the multiplicity of hi(A)) be ni. The 

function g(x) is finite Vxe lRn if and only if 

a) Re(hi(A)) I O ,  Vi, and 

b) The modes hi(A) with Re(hi(A)) = 0 and ni > 1 have independent 

eigenvectors ( i.e. the order of the Jordan blocks associated with the 

eigenvalues of A with Re(hi(A)) = 0 and ni > 1 is 1.). 
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proof: 

Let P be the similarity transformation matrix that transforms A to the Jordan form as 

follows 

A, = PAP-' 

Since AJ is in Jordan fom, every entry of the eAJ' matrix is of the form tke(%+joi)t where 

hi = ai+joi and hi is an eigenvalue of AJ. If ai c 0, then 

tkdoit < 00 only if k = 0, and consequently the order of the Jordan block associated with the 

eigenvalue jo, is 1. 

i+j"i)' c 00 Vk. If ai = 0, then 

e= 

If the assumptions a) and b) of the theorem are satisfied, then eAJ' and eAt are bounded; 

consequently, y(Q,t) = CeAtQ is bounded and g(x) c 00, VXER~. 

* 
If g(x) < 00, then y(x,-,,t) = CeAtQ is bounded; consequently, the observable modes of 

(A,C) have to satisfy assumptions (a) and (b) of the theorem. 

///I 

Systems that satisfy conditions (a) and (b) of theorem 3.1 are called neutrally stable. 

Note that if [A,C] is unobservable and if, because of the unobservability, there is an unstable 

pole/zero cancellation, then all the assumptions of t h e o ~ m  3.1 are met and g(x) will be finite. 

Because g(x) will be used eventually for designing control systems, there are other obvious 

reasons that unstable pole/zem cancellations are not allowed. 
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Theorem 3.2: 

Let g(x) be as in Definition 3.1 and assume that g(x) c 00, VxrslWn. Then g(x) is 

continuous. 

proof: 

Given an E > 0, V x0,vg R" , 3 w g  R" 

such that if 1 xo - vo l I6 ,  then vo = Q +  wo 

and since g(x) c 00, max (o,,(CeA?) is finite and thus 6 > 0, Vx€lWn 
t 

Definition 3.3: The set P, is defined as: 

Pg = { [x,v] : XER", V€R, v 2 g(x) } (3.8) 

From this definition we see that Pg is the interior of the graph of the function g(x) in 
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Itn+', as shown in figure 3.2. 
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Definition 3.4: BA,C is the set of all XE R" with 0 S g(x) 5 1, i.e. 

BA,c= {x :  O S  g(x)< 1) (3.9) 

Suppose that the system (3.1)-(3.4) has an initial condition %e BA,c. From this definition we 

see that for such an initial condition the output of the system, y(t), will satisfy Ily(t)ll, < 1. 

Theorem 3.3: 

The set Pg as it is defined in Definition 3.3 is a convex cone. 

proof: 

Pg is a cone. 

Pg is a cone if WIE Pg and =It+ then cw1E Pr. 

If [xi,vll E Pg and CER+ then since v12 g(x1) 

cg(x1) = g(cx1) * cv12 g(cx1) which imply that [CX~,CV~]E Pg and Pg is a 

cone. 

cv12 cg(x1) 

Pg is convex. 

V [xl,v1], [xz,vd E Pg, given p such that 0 5 p 5 1 

if [xi,vil, [x2,vzl E Pg then p[x1,vl] and (l-p)[x2,v2] E P,because P, is a 

cone 

since P V l 2  g(px1) and (1-p)vz 2 g((Wx2) * pvl+(l-p)v2~g(pxl)+g((l-p)x2) 
since g(pxl)+g((l-p)X2)~g(pxl+ (1-p)x2) * pv1+ (l-pIv2 2 g(px1+ (1-p)xz) 

Then I px1+ (1-pIx2, pv1+ (1-p)vzl E pg. 

So a convex combination of two points in the set is also in the set and consequently 
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Pg is convex. 

1111 

One might expect that Pg would be a convex cone from the linearity (g(ax) = ag(x))of 

the system (3.1)-(3.4). Because Pg is a cone and g(x) defines its boundary we will refer to 

g(x) as a conic function. 

Corollarv 3. 1: 

BA,C is a symmetric, closed and convex set. 

Proof 

The proof of this corollary follows from Definitions 3.1- 3.5 and theorems 3.1-3.2. Note 

that the set BA,C is symmetric with respect to the origin. This is true because 

Ily(xo,t)ll, = Ily(-xo,t)ll, and consequently g(x0) = g(-xo). Also, note that because P, is a 

convex cone, then BA,c is a closed convex set. 

1111 

Theorem 3.4: 

Define ei to be an eigenvector of A and q(C) to be the null space of C. 

If ei e q(C) V i then BA,C is bounded. 

Equivalently, if the pair [A,C] is observable then BA,C is bounded. 
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Proot 

If ei e q(C) Vi, then y(xo,t)& Vxo, and since yi(cx0,t) = cyi(x0,t) V CE R, i 

g(cx0) = 1 for some scalar c VXO, So BA,c={ KO: g(x0) 5 1 } is bounded. 

1111 

If the pair [A,C] is not observable then BA,C will not be bounded. Specifically, if el E 

q(C) for some i then cei E BA,C Vscalar c. 

Figure 3.2 gives a visualization of the function g(x0) and the sets BA,c and P, in R" and 

R'+' respectively. 

t v = g(x) 

Figure 3.2: Visualization of the function g(x) and the sets Pg and BA,c. 
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Definition 3.5 r171 : The upper right Dini derivative is defined as 

(3.10) 

Definitions of the lower right, upper left and lower left Dini derivatives are given in 

reference [ 171. In the sequel only the upper right Dini derivative will be used as in definition 

3.5. The D+f(b) is finite at if the function f satisfies the Lipschitz condition locally around to 
[17]. Note that the function g(x) defined by Definition 3.1 satisfies the Lipschitz condition 

locally if the conditions of Theorem 3.1 are met. This is obvious because g(x) is a conic 

function. 

Theorem 3.5 r171: 

Suppose that f(t) is continuous on (a,b), then f(t) is nonincreasing on (a,b) iff D'f(t)SO 

for every tE (a,b). 

Proof: 

The proof of this theorem is given in reference [ 171. 

Ill1 

In the following example we will illustrate the set B A , c  and an approximate BA,c set, 

B'A,,, for a given linear time invariant system. 

Example: 

Consider the following model 
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-2.6093 1.4180 

-7.1476 1.5213 
;(t) = [ -29.8308 2.989 

-68.7543 10.8387 
x(t) + u(t) (3.11) 

(3.12) 

I To compute the set BA,c for this system, it suffies to compute the output y(t) with u(t) = 

0 for different initial conditions, xi, on the unit circle. With y(xi,t) we compute g(xi) = 

lIy(xi,t)lL. The boundary of BA,c is then given by the points vi = xi/g(xi). This follows 

from the linearity of the unforced system with respect to the initial condition. The BA,, set for 

this system is shown in Figure 3.3. 

The system has two poles at 444kj2.422. and no finite transmission zeros. The pair 

[A,C] is observable and hence it follows from theorem 3.1 that the function g(x) is bounded. 

Consequently, the BA,, set is closed. In addition, the BA,c set, as expected, is a symmetric 

and convex set. 
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The BA set for the academic example 
1.75 

1.05 

0.35 

x2 

-0.35 

- 1.05 

- 1.75 
-1.75 -1.05 -0.35 0.35 1.05 1.75 

x1 

Figure 3.3: The BA,c set for the example. 

The exact calculation of this set could be difficult for higher order systems and in such a 

case an approximation of that set can be used. For this particular example the B A , c  set can be 

easily approximated by an ellipse that includes the whole set. Figure 3.4 shows the actual 

BA,, with its ellipse approximation B'A,C. The B'A,C is given by the following 
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and B' A S  sets for the academic example The B*,c 
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1.75 

1.05 

0.35 

x2 

-0.35 

- 1.05 

- 1.75 
-1.75 -1.05 -0.35 0.35 1.05 1.75 

Figure 3.4: The BA,c set and an approximation of it B'A,C for the example. 

One can do better approximations of this particular BA,c but the point here is not to find 

the best approximation but to see the effects of an approximation in a particular example. In the 

sequel the system (3.1 1)-(3.12) will be used as a compensator in a closed loop control system. 

The Bkc and the B'A,C will be used in a new control methodology (will be described in 

chapters 4 and 5) and the effects of this approximation will be discussed. 
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3.3. Design of a Time-Varying Gain such that the Outputs of a 

Linear System are Bounded 

Assume that a linear system is defrned by the following equations 

;(t) = Ax(t)+Bu(t) AE ItnXn, BE ItnXm 

YO) = Cx(t) CE Itmxn 

(3.14) 

(3.15) 

and also assume that the linear system is neutrally stable. Then, if one were to construct the 

function g(x) (definition 3.1) for the system (3.14)-(3.15) for B = 0, the following is true; g(x) 

-c 00, VXE It'. This follows from theorem 3.1. 

The goal here, is to keep the outputs of the linear system (3.14)-(3.15) bounded @.e. 

lyi(t)l I 1, V t, i) for any input u(t). To achieve our goal, consider the following system with a 

time-varying scalar gain h(t) 

k(t) = Ax(t) + Bh(t)u(t) 

Y(t) = W t )  

(3.16) 

(3.17) 

Figure 3.5: The basic system for calculating h(t). 
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Figure 3.5 shows the basic system and the location of the time-varying gain h(t). In this 

framework a basic problem can be defined. 

The Basic Problem: 

At time to, find the maximum gain h(to), 0 S h(to) S 1, such that Vu(t), t > to 3 

h(t), t > to such that the output will satisfy lyi(t)l S 1 V i, t > to. 

A solution to this problem can be obtained by using a function g(x) given in defmition 

3.1 and by using a set BA,c given in definition 3.4. To be more specific, for the system 

(3.16)-(3.17), with u(t) = 0, one can define g(x) as in eqs. (3.18)-(3.19). The function g(x) is 

finite because the system (3-16)-(3-17) is neutrally stable (theorem 3.1). 

(3.18) 

(3.19) 

By defining g(x) and BA,c as in eqs. (3.18)-(3.20) one can construct k(t) as follows: 
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Construction of 4t):  

For every time t choose h(t) as follows 

a) if x(t)E IntBA,c then u t )  = 1 

b) if x(t)E B ~ B A , ~  then choose the largest h(t) such that 

(3.21) 

(3.22) 

0 I h(t) I; 1 (3.23) 

or for the points where g(x) is differentiable choose the largest h(t) such that 

0 I h(t) I 1 

Dg(x(t))[Ax(t) + Bh(t)u(t)l I 0 

(3.25) 

(3.26) 

where Dg(x(t)) is the Jacobian matrix of g(x(t)) as in definition 3.2. 

c) if x(t)e BA,, then choose h(t), 0 I h(t) I 1 such that the expression in 3.24 is 

minimum. 

In the construction of h(t) if x(t& BA,C then the basic problem cannot be solved 

because there exists a u(%) fort > to (i.e. u(t) = 0) where it will lead to Ily(x(t&t)lloo > 1. In 

such a case, the best that can be done is to find h(t) such that the states x(t) will be driven into 

BA,, as soon as possible. 

With the h(t) defined as above let us examine some properties of the system (3.16)- 

(3.17). To be more specific it will be shown that 

(a) There is always exists a h(t) that satisfies all the constraints in the 

construction of h(t). 

(b) If h(t) is constructed as it was specified above and x(t& BA,c. then x(t)E B,,, 

Vt > to and for all u(t). 
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(c) the construction of h(t) solves the basic problem when that is possible 

(i.e. x(t)EBA,C for all t). 

Theorem: 
For the system given in eqs. (3.16)-(3.17) the following is always true VxeRn. 

(3.27) 
g(x(t)+e[Ax(t)l) - g(x(t)) < 0 lim sup 

E 4  E 

and at the points where g(x) is differentiable 

Dg(x) Ax 5 0 Vx€Rn (3.28) 

where Dg(x(t)) is the Jacobian matrix of g(x(t)) as in definition 3.2. 

proof: 

Assume that the inequality (3.27) is not true for some x(t) = x,. If the ~0 is used as an 

initial condition to the ;(t) = Ax(t) system then because of theorem 3.5 3t'M such that g(x(t')) 

> g(x(t)). But g(%, = IICx(t)lloo so this is a contradiction. Therefore, inequality (3.27) is true 

VXE R'. 

Ill1 

The construction of k(t) is always possible because of theorem 3.6, namely one can 

choose k(t) = 0 Vt and the inequality (3.24) is always true. 

Lemma 3.1: 

In the system (3.16)-(3.17) if %EBA,C and h(t) is constructed as it was described 

above, then x(t)E BA,c for all t and for all u(t). 
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proof: 

The proof of this Lemma follows from the construction of h(t). 

Theorem 3.7: 

For the system (3.16)-(3.17) with h(t) constructed as above the following is always true 

if XOE BA,c then Ily(t)lloo 1;l Vinput u(t) 

if xoe BA,C then Ily(t)lloo Sg(Q) Vinput u(t) 

Proof: 

If XOE BA,C, then 

The construction of h(t) guarantees that x(t)E BA,c Vt. (see Lemma 3.1). It is also true 

that for any state x(t)E BA,c IICx(t)ll, 5 1. If IICx(t)ll, > 1 and x(t) is used as an initial 

condition in the system the following will be true, g(x(t)) > 1 and x(t)e BA,, which is a 

contradiction. Since y(t) = Cx(t) and x(t)E BA,, Vt then Ily(t)lloo 51 Vinput u(t). 

If x& BA,c, then g(%) > 1 and from the construction of h(t) g(x(t)) < g(xo) (g(x) is 

decreasing by theorem 3.5). Thus Ily(t)ll, S g(x(t)) I g(%). 

///I 

Theorem 3.8: 

At every time to, if x(t& BA,, then the time-varying gain h(b) is the maximum possible 

such gain that 0 I h(b) I 1 and Vu(t), o b  3 h(t), t > to such that the output lyi(t)l I 1 V i, 

t>b. If x(t& BA,c then such a gain h(b) does not exist. 
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Proof: 

If X(b)E BA,c, then 

from the construction of h(t), at any time to the maximum gain h(@ is chosen such that 

0 I h(@ I 1 and x(t)E BA,CVt > to. If a greater gain h(@ is used then g(x(@ will be 

increasing (see theorem 3.5) and x(t)e BA,cVt>to; consequently there exists u(t) (Le. u(t) = 0 

t 2 to) where Ily(t)ll, > 1. 

If x(t& BA,C, then there exists u(t) (i.e. u(t)=O t 2 to) where Ily(t)lloo > 1 and thus for 

any h(b) the basic problem does not have a solution. 

1111 

The solution to the basic problem which was given above assumed that h(t) is a scalar. A 

similar solution can be obtained if a time-varying diagonal matrix A(t) is employed. 

(3.32) 

The construction of A(t) and all the properties that were described previously can easily 

be extended for the matrix case. 

Similar analysis can be done for systems with a feedforward term b m  the controls to the 

outputs. Consider the system defined by the following equations 

;(t) = Ax(t)+Bu(t) AE W"'", BE RnSm (3.33) 
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y(t) = Cx(t) + Du(t) CE Itmxn, DE Rmxm (3.34) 

One can introduce a time-varying gain h(t) so that for any input u(t) the output y(t) 

remain bounded. A similar basic problem can be defined as for the case where D = 0. The 

construction of h(t) then is modified as follows 

Construction of A(t) for  the system with a feedforward term (D  matrix): 

For every time t choose h(t) as follows 

a)The largest h(t) such that IICx(t) + Dh(t)u(t)ll, I 1 

b) if x(t)E BdBA,c then choose the largest h(t) such that (3.35) 

0 I h(t) I 1 (3.36) 

or for the points where g(x) is differentiable choose the largest h(t) such that 

0 I h(t) 5 1 (3.38) 

(3.39) Dg (x( t) ) [ Ax( t) +B h( t)u( t)] SO Vu0 

where Dg(x(t)) is the Jacobian matrix of g(x(t)) as it is given in definition 3.2. 

c) if x(t)+! B,,, then choose h(t), 0 I h(t) 5 1 such that the expression in (3.37) is 

minimum. 

When a feedforward term (D matrix) is present, part (a) of the construction of h(t) is 

different. Because of the feedforward term one can drive Ily(t)ll, > 1 at every time t just with 

the controls. The constraint (a) in the construction of h(t) prevents the "large" controls from 

entering into the system and consequently causing Ily(t)ll, > 1. 
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3.4 Design of a Time-Varying Rate such that the Outputs of a Linear 

System are Bounded 

Assume that a linear system is defined by the following equations 

$(t) = Ax(t) + Br(t) (3.40) 

Y(t) = W t )  CE Itrnxn (3.41) 

A E R”’”, B E RnXm 

The goal here, again, is to keep the outputs of the linear system bounded (i.e. lyi(t)l S 1 V 

t, i) for any r(t). In section 3.3 a time-varying gain was introduced and this problem was 

solved completely. Here a time-varying-rate will be introduced and a different solution will be 

obtained. One can modify the inputs to the system r(t) to r,(t) with a time-varying rate 

operator, such that for any input r(t) the system output y(t) remains bounded. The new system 

can be defined as follows (also shown in figure 3.6). 

(3.42) 

(3.43) 

(3.44) 
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Figure 3.6: The basic system for calculating p(t). 

Now a basic problem for this case can be defined. 

The Bask Problem: 

At time to find, if possible, the maximum time-varying rate p(to), 0 I p(tO) I-, such that 

Vr(t), t > to 3 p(t), t > to such that the output will satisfy lyi(t)l I 1 V i, t > t& 

Define the following auxiliary system 

(3.45) 

(3.46) 

(3.47) 

and with xa(t) = [ x(t) r&t) 3T one can obtain the following augmented system 
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The system (3.48)-(3.49) is similar to the system (3.16)-(3.17) if the u t )  is replaced by 

p(t), the only difference is the fact that the p(t)E [O,-] whereas h(t)E [0,1]. 

To obtain the solution to the basic problem we define a function g(x) for the system 

(3.48)-(3.49) for Ba = 0 and a set BA,C as it was described in section 3.2. 

(3.50) 

(3.51) 

(3.52) 

For the function g(x) to be finite for all XE R" the original system (3.40)-(3.41) has to be 

such that the augmented system (3.48)-(3.49) is neutrally stable. 



Construction of Mt): I 

I For every time t choose p(t) as follows 

! a) if X,(t)E IntBA,c then p(t) = = which implies that r(t) = rp(t) (3.53) 

b) if Xa(t)E BdB,,c then choose the largest p(t) such that 

0 5 p(t) I -  

(3.54) 

or for the points where g(x) is differentiable choose the largest p(t) such that 

0 5 p(t) I (3.56) 

Dg(xa(t))[A,x,(t)+B,~l(t)e,(t)l 5 0 v t > 0 (3.57) 

where Dg(x,(t)) is the Jacobian matrix of g(xa(t)) as in definition 3.2. 

c) if x,(t)e BA,, then choose p(t), 0 I p(t) I = such that the expression (3.55) is 

minimum. 

I The proofs of the following theorems parallel those of section 3.3. By changing h(t) to 

p(t), and u(t) to e,(t) all the proofs are identical. The fact that h(t)E [0,1] but p(t)E [O,-3 is not 

important, for the proofs, because is not used in any of them. I 
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Theorem 3. 10: 

For the system given in (3.48)-(3.49) and the given construction of p(t) the following is 
n+m always true VX,EW . 

and at the points where g(x) is differentiable 

n+m Dg(xJ A,x, I O  VX,E W 

(3.58) 

(3.59) 

where Dg(x,(t)) is the Jacobian matrix of g(x,(t)) as in definition 3.2. 

The construction of p(t) is always possible because of theorem 3.10, namely one can 

choose p(t) = 0 Vt and the inequality (3.55) is always true. 

Lemma 3.3: 

In the system (3.48)-(3.49) if X,~E BA,c and p(t) is constructed as it was described 

above the states x,(t) of the system belong to BA,c (i.e. x,(t)E BAtc) for all t and for all r(t). 

Theorem 3.1Q: 

For the system (3.48)-(3.49) with p(t) constructed as above the following is always true 

if X , ~ E  BA,c then lly(t)ll~ I 1 Vinput r(t) 

if xaoe BA,c then Ily(t)lloo I g(xa0) Vinput r(t) 
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Theorem 3.1 1: 

At every time to, if xa(t& BA,,, then the time-varying gain p(k) is the maximum 

possible such gain so that 0 I p(h) I 00, and Vr(t), t > to 3 p(t), t > to such that the output 

lyi(t)l I 1 V i, t > to. If xa(t&’ BA,, then such a gain p(b) does not exist. 

3.5 Introduction to the New Design Methodology 

In sections 3.3 and 3.4 two basic problems were solved. In section 3.3 it was shown 

how to design a time-varying gain h(t) so that the output of a linear system remains bounded. 

In chapter 4 the time-varying gain will be used as an Error Governor EG (as shown in figure 

3.7 ) to significantly improve the performance of the closed loop system by keeping the 

controls u(t) bounded. In fact, the Error Governor will guarantee that the controls never 

saturate. 

compensator saturation P h t  

~ 

Figure 3.7: Control structure with the EG operator 

Another control structure that also ensures that the control u(t) will never saturate is 

shown in figure 3.8. In chapter 5 the time-varying rate, introduced in section 3.4, will be used 

as a Reference Governor (RG). In chapter 5 we also present a third control structure which 
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utilizes both the EG and RG operators ( not shown here). 
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Control mctufe with EG 

Control structure with RG 

Control structure with RG and EG 

Figure 3.8: ControI structure with the RG operator 

Table 3.1 shows the potential applications of the different control structures. The 

intention here is not to give a complete description of the new design methodology but rather to 

give an overview on where one could use the control structures. 

Neutrally stable 
compensator 

I r l  

Control structure with RG 

Control structure with RG and EG 

Unstable 
compensator 

~~~~~~ 

Control structure with RG 

Control structure with RG 
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3.6 Concluding Remarks 

In this chapter some necessary mathematical preliminaries were introduced which will be 

used to define the new design methodology. Two basic problems were posed and solved. 

In the first problem, a time-varying gain was defined so that for any input in a linear 

system, if that input is multiplied by the time-varying gain, the output of the system will remain 

bounded. 

In the second problem a time-varying rate was designed limiting the input rate such that 

for any input the output of the linear system remains bounded. 

The solutions to these two problems will be the basis for the new design methodology 

which will be presented in chapters 4 and 5. 
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4.1 Introduction 

In section 2.3 (performance analysis) the need for an operator EG and/or an operator RG 

to achieve better control system performance was shown. In section 3.3, it was shown how to 

choose a time varying gain h(t), at the inputs of a linear time invariant system, such that the 

outputs of that system will remain bounded. In this chapter, we combine the results of sections 

2.3 and 3.3 to obtain, a control structure with an EG operator (i.e. a time gain-varying gain). 

This structure will be introduced and analyzed. With the EG operator at the error signal, the 

system will remain unaltered (linear) when the references and disturbances are such that they 

don't cause saturation. For "large" reference and disturbance signals the operator EG will 

ensure that the controls will never saturate. This control structure is useful for feedback 

systems with stable open loop plants and neutrally stable linear cornpensatom 

The new control structure has inherent good properties (stability, no reset windups etc.) 

which will be discussed and demonstrated in simulations of two examples. The examples 

chosen are an academic example (with pathological directional properties) and a model of the 

F8 aircraft longitudial dynamics. 

4.2 Description of the Control Structure with the Operator EG 

Consider a feedback control system with a linear plant G(s), a linear compensator K(s) 

and a magnitude saturation at the controls. The plant and the compensator are modelled by the 

following state space representations: 

Plant: 
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u,(t) = sat(u(t)) 
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(4.3) 

where r(t) is the reference, u(t) is the control and y(t) is the output signal. 

The compensator can be thought of as an independent linear system with input e(t) (error 

signal) and output u(t) (control signal). The objective is to introduce a time-varying gain h(t) 

(EG operator) at the error, e(t), such that the control, u(t), will never saturate. Following the 

discussion of section 3.3 the gain, h(t), is injected at the error signal and the resulting 

compensator is given by 

Figure 4.1: The basic system for calculating h(t). 

In analogy to figure 3.5, figure 4.1 shows the basic system for computing h(t). A 

function g(x) and a set B,,c are defined and then the construction of h(t) follows in accordance 
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with the results presented in chapter 3. 

where 
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(4.10) 

(4.1 1) 

(4.12) 

B A , C  = (x: g(x) 5 1) (4.13) 

For g(x) to be finite, for all x, the compensator has to be neutrally stable 

(theorem 3.1). This is the reason why the operator EG is to be used only for feedback system 

with neutrally stable compensators. This is not an overly restrictive constraint because most 

compensators are usually neutrally stable. With finite g(x) the EG operator is given by 

Construction of A(t) : 

For every time t choose h(t) as follows 

a) if x,(t)E IntBkc then h(t) = 1 

b) if xc(t)E B d B A , c  then choose the largest k(t) such that 

(4.14) 

(4.15) 

0 s h(t) s 1 

or for the points where g(x) is differentiable choose the largest h(t) such that 

0 5 X(t) I; 1 (4.17) 

Dg(~(t))[A~c(t)+B~(t)e(t)l  0 tt t > 0 (4.18) 

where Dg(x,(t)) is the Jacobian matrix of g(x,(t)) as in definition 3.2. 

c) ifxJt)e BA,C then choose h(t), 0 I; h(t) 5 1 such that the expression (4.16) is 

minimum. 
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From the results in section 3.3 it can be proven that if, at time t = 0, the compensator 

states, x,(t), belong in the BAYC set, then the EG operator exists and the signal u(t) remains 

bounded for any signal e(t). Hence, the controls will never saturate for any reference, any input 

disturbance, and any output disturbance. 

Figure 4.2: Control structure with the EG operator. 

Figure 4.2 shows the control structure obtained with the operator EG at the error signal. 

With this control structure the feedback system will never suffer from the reset windup 

problems which occur when open loop integrators or "slow" poles are present. The reason for 

the absence of reset windups is that the Error Governor will prevent any states associated with 

integrators or the "slow" poles from reaching a value which will cause the controls to exceed 

the saturation limits. 

Another important property of the new control structure, is that the saturation does not 

alter either the direction of the control vector or the magnitude of the controls. Thus, if the 

compensator inverts part of the plant the saturation does not alter the inversion process. 

4.2.1 Stability Analysis for the Control System with the EG 

When the plant is stable and the compensator includes the EG operator the following 

theorem can be Droven. 
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3 I l a a m u :  

The feedback system with a stable plant given by eqs. (4.1)-(4.3) and a compensator 

given by eqs44.7)-(4.9) is finite gain stable. 

proof: 

3ro 3 Ilrll, < ro 

if Ilrll, 5 ro then h(t) = 1 and the linear system is stable, thus finite gain stable 

3y0 3 Ilyll, 5 yo Vr(t) because G(s) is stable with bounded inputs 

if Ilrll, > ro then Ilyll, < (Ilrll,,Jro)yo and Ilyll, (y&o)llrll, 

Thus, fork = (y$ro) then Ilyll, 5 kllrll, 

Ilull, S 1 

Every stable system G(s) with bounded inputs is BIBO stable because the outputs are 

always bounded. The system in figure 4.1 is finite gain stable because in addition to being 

BIBO stable it is known that there exists a class of "small" inputs, Ilr(t)ll, I r& for which the 

system remains linear. 

For unstable plants one cannot guarantee closed loop stability because when X(t) = 0 the 

system operates open loop. This is the reason why the control stmetwe with the EG should be 

used for feedback systems with stable open loop plants (see table 3.1). 

For stable plants the closed loop system remains finite gain stable in the presence of any 

input and/or output disturbance. This is m e  because the controls never saturate for any input 

and/or output disturbance. In addition, it is easy to see that the closed loop system will remain 

finite gain stable far any stable unmodelled dynamics. In fact, the controls will never saturate if 

the model is replaced by the "me" stable plant; thus, integrator windups and/or control 

direction problems cannot occur. 
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4.2.2 Commtation of the ODerato rEG 

In this section the actual computation of h(t) and some implementation issues will be 

discussed. There are two fundamentally different ways to compute h(t); in one method the 

computation is performed mostly on-line and in the other method most of the computation is 

performed off-line. As discussed previously, the time varying-gain was incorporated in the 

compensator model and the modified compensator was given by the following 

(4.19) 

(4.20) 

Also assume that to implement the compensator a discrete difference equation, with 

integration step of At7 which approximates the differential equation (4.19)-(4.20) is obtained. 

The model of the approximate discrete system is assumed to be the following 

x,((n+l)At) = Fx,(nAt) + Gh(nAt)e(nAt) 

u(nAt) = C,x,(nAt) 

(4.21) 

(4.22) 

The objective here is to discuss the implementation of h(t) and its discrete time 

approximation h(n). The intention is not to give the "best" algorithm for computing or 

approximating h(t), but rather to give a feeling on what the issues are in constructing h(t). 

More research is needed to find efficient and computationaly robust algorithms. 

First, a computation that is performed mostly on-line is possible and is given by the 

following steps. 

STEP 1: Quantization of h(t): 

At every time b7 the time-varying gain h(t) is such that 0 I h(t) I 1. Because of 
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computational limitations one must quantitize the segment [0,1] with M points GI, . . ., hM). 

STEP 2: Calculation of UnAt): 

To compute h(nAt) one has to compute g(x). This computation of g(x) can be done 

directly or indirectly. Form the definition of g(x) (definition 3.1) one can conclude that the 

following is true: 

(4.23) 

In the direct co mDutation of g(,& the CJ" is stored and for any vector x,(O) the function 

g(x) can be computed. At every time e t ,  the error vector e(n&t) and the states of the 

compensator x,(@t) are known exactly. Then 

if g(x,(@t)) < 1 we set h(n&) = 1. 

if g(x,(@t)) = 1 we compute the following quantity 

The idea is to search (e.g. binary search) through all the q s  
to find the maximum Xi such that z 5 0. Then use that the max Xi as X(n&). 

if g(x,(n&t)) > 1 then search through all the q s  and use that & which 

minimizes z as h(@t). 

One can compute d x )  indirectlv. At every time a t  simulate the system (4.21)-(4.22) 

by using the vector x,(@t) as an initial condition, the following input vector 

(4.25) 
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and h(@t) = hi, for some i. 

We want the maximum, for all n, of Ilu(nAt)ll, not to exceed the saturation limits. Thus, 

choose as h(n&) the maximum hi to satisfy that. 

Most of the computations of h(t) in this thesis, for the simulations, were done on-line by 

computing h(t) indirectly as specified previously. By using parallel processing it seems 

possible to compute g(x) directly even for systems with large number of states. 

Another computation, performed mostly off-line, is possible and is given by following. 

STEP 1: Computation of the function g(x): 

One can compute the function g(x) using "brute force". Consider an n* dimensional 

hypershere and define a quantization with N points (xcl, . . . . ,xcN). Then by using xCi as an 

initial condition, one can find g(xCl), for all i, as follows: 

(4.26) 

(4.27) 

(4.28) 

The function g(x) is defined at N points and one can use approximation theory to obtain a 

closed form expression from N points on the n* dimensional hypersphere [41],[42]. 

Sometimes it may be difficult to obtain a closed form expression for g(x); in such a case, the 

&xi), for all i, can be stored and then for any other vector VE It'' one can find the closest (in 

the Euclidean norm sense) collinear vector ax, to v and use g(axi) as an approximation to 

g(v). Since g(x) is a cone the function is known for any vector collinear to xi, (axi, a~ R); 

Namely, g(axI)  = ag(x,). 

If the dimension of the compensator is large an approximate g(x) should be considered. 

For example, in the sequel an ellipse is used to approximate g(x) for the academic example in 

section 4.2.3. 
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More research is needed to determine how to choose the value of N so that the 

quantization points are "enough" and to determine smart ways to approximate g(x). 

STEP 2: Quantization of X(t): 

At every time to, the time-varying gain k(t) is such that 0 I h(t) I 1.Because of 

computational limitations one must quantize the segment [0,1] with M points (XI, . . ., h). 

sTEp3: Calculation of k(nAt): 

This is an on-line computation. At every time a t ,  the error vector e(@t) and the states 

of the compensator xc(n&) are known exactly. Then 

if g(x,(n&)) < 1 then X(n&t) = 1. 

if g(x,(@t)) = 1 then compute the following quantity 

The idea is to search (e.g. binary search) through all  the Xi's to find the 

maximum Xi such that z 5 0. Then use the max Xi as X(n&t). 

if g(x,(@t)) 2 1 then search through all the &'s and find the that minimizes 

z (eq. 4.29) and use it as A , & & ) .  

Two methods for computing X(t) were described. Although, the methods were direct 

application of the theory and better methods may be possible, one can draw the following 

conclusions. 

In the first method (on-line calculations) the computation of g(x) is very accurate. Thus 

if M is large the computation of h(t) is "almost" exact. This is true because the comDensator is 

known exactly (no modelling errors). The implementation of the method is simple and for low 

order compensators the calculations are fairly fast. For large order compensators, if parallel 

processing is available, the on-line calculations can also be fast. More research is needed to 
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- - - 
-1.5 1 0 1 - 1 0  

2 -3 2 0 0 0  

0 .5 -2 1 

1 -1.5 0 -5 0 1.8 

x(t) + Us(t) 

- - - 

explore the applicability of this method. 

In the second method (mostly off-line calculations) approximations were made for the 

calculation of g(x). For low order compensators it is possible to approximate g(x) very well by 

choosing large number N of points in R"; for large compensators this may not be possible so 

approximate g(x) are necessary (n dimensional ellipsoids for example). For this case the on- 

line computation is minimal, even for large M, and accurate. 

4.2.3 Simulation of the Academic Example #1 

The purpose of this example is to illustrate how the saturation can disturb the 

directionality of the controls and alter the compensator inversion of the plant. The "academic" 

plant G(s) has two zeros with low damping which the designed compensator K(s) cancels. In 

addition, the compensator does not have any integrators so the windup phenomenon is not 

expectedtooccur. 

Consider the following state space representation of the plant G(s) 

r o 2.4 -3.1 1 1 

(4.30) 

(4.3 1)  

(4.32) 

Table 4.1 shows the poles and zeros of the plant G(s). Note the location and damping of 

the zeros. 
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le 4.1 Poles a n d z e r o s  of 

Poles 
Rea I I mag i nary Hagn i tude Damp i ng 

-5.7678E-01 0.0000E-01 5.7678E-01 1.0000E+00 
-2.2460E+00 0.0000E-01 2.2460E+00 1.0000E+00 
-2.7222E+00 0.0000E-01 2.7222E+00 1.0000E+00 
-5.9550E+00 0.0000E-01 5.9550E+00 1.0000E+00 

zeros 
Rea I I mag i nary llagn i tude Damp i ng 

-5.4404E-01 2.4228E+00 2.4831E+00 2.1909E-01 
-5.4404E-01 -2.4228E+00 2.4831E+00 2.1909E-01 
2 more inf in i te  

Singular values of the plant 
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0.01 0 .1  1 .o 10 100 

b g w  (radlsec) 

Figure 4.3: Singular values of the plant in the academic example #l. 

Figure 4.3 shows the singular values of the open loop plant. Notice the effect of the two 

resonant zeros of the plant in the singular values at approximately 2.5 dw. A compensator 

was designed to cancel the two resonant zeros of the plant. The compensator state space 

representation is given by the following model 
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h(t) e(t) (4.33) 
-29.8308 2.989 

-68.7543 10.8387 

-2.6093 1.4180 

-7.1476 1.5213 

(4.34) 

Table 4.2 shows the poles and zeros of the compensator K(s) when h(t) = 1. The 

compensator has two states with poles at -544 f j2.422. The eigenvectors of the poles are 

collinear with the control direction of the transmission zero of the plant and thus, the 

compensator cancels the zeros of the plant. 

Poles 
Rea I I mag i nary tlagn i tude Damp i ng 

-5.4400E-01 2.4228E+00 2.4831E+OO 2.1908E-01 
-5.4400E-01 -2.4228E+OO 2.4831E+00 2.1908E-01 

zeros 
nofinitezeros 
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Loop singular values 
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Figure 4.4 Singular values of the loop transfer function in the academic example #l. 

Figure 4.4 shows the singular values of the G(s)K(s) transfer function matrix. Since the 

compensator cancels the poorly damped zero the antiresonance present in figure 4.3 is not 

present in figure 4.4. Also, the compensator is designed so that the singular values of the 

G(s)K(s) transfer function matrix are matched at low frequencies and thus, it is expected that 

the response of the system is similar for low frequency references in all directions. Integrators 

are not present in the loop and windup problems are not expected. 

In this example, the saturation can disturb the cancellation of the plant zeros by the 

compensator. Since both the plant and the compensator are stable the control structure with the 

operator EG can be used to correct the problem. Figure 4.5 shows the closed loop system with 

the operator EG at the error signals and saturation limits at f I. 
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sat 

I 

Figure 4.5: Closed loop system for the academic example #1 with the EG. 

Three simulations were performed for the closed loop system shown in figure 4.5. These 

different simulations are as follows: 

1) In the first simulation h(t) = 1 and u(t) = u,(t). This is a simulation for a 

linear time invariant closed loop system and is referred to as the simulation for 

the linear system. It is assumed that the compensator K(s) was designed so 

that the linear system would have desirable responses. 

2) In the second simulation h(t) = 1 and u,(t) = sat(u(t)). This is a simulation 

where the saturation element is added to the linear system without any other 

modification. This simulation is referred to as the simulation for the system 

with saturation. 

3) In the third simulation u,(t) = sat(u(t)), and h(t) was computed on-line 

by the method given in section 4.2.2. The computation was performed in 

approximately three hours using a Macintosh 512K. This type of simulation is 

referred to as the simulation of the system with saturation and the EG. 
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Figure 4.6 shows the state trajectory of the compensator states for the simulation of the 

linear system. Note that the states of the compensator do not remain within the BA,c set so 

there is a potential for the controls to saturate. 

Figures 4.7 and 4.8 show the linear response of the outputs y(t) and the controls u(t) 

respectively. The controls satisfy Ilu(t)ll, > 1 at certain times and saturation is expected It is 

assumed that the output responses meet the specifications. Thus, we would like the outputs to 

retain the relative shapes of figure 4.7 when we introduce the nonlinear saturations. 

state trajectory for the academic example with r=[ . 3  . 3  lT 
1.75 

1.05 

0.35 
x2 

-0.35 

- 1 .05 

- 1.75 
-1.75 -1.05 -0.35 0.35 1.05 1.75 

Figure 4.6: State trajectory of the compensator states in the linear system, (r = [.3 .3IT). 
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0.40 

0.30 

g 0.20 
5 
e( 0” 0.10 

0.00 

-0.10 

Academic example (linear) 

0.00 2.00 4.00 6.00 8.00 10.00 
’ I h e  (sec.) 

Figure 4.7: Output response for the linear system, (r = [.3 .3IT). 

Academic example (linear) 
1 .SO 

0.90 

z 
-0.30 

-0.90 

- 1 .SO 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 4.8: Controls in the linear system, (r = [.3 .3]T). 
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Figure 4.9 shows the state trajectory of the compensator states for the simulation of the 

system with saturation, it is clear that he states of the compensator do not remain within the 

B,,, set. When the controls are saturated the direction of the controls is disturbed and the state 

trajectory changes dramatically (compare figures 4.6 and 4.9). 

Figures 4.10 and 4.1 1 show the response of the outputs and the controls respectively. 

The controls have magnitude greater than one and consequently are saturating. In this example, 

when saturation occurs, the direction of the controls is altered in such a way that even though 

the original reference is [ .3 

towards [.3 

integrators to cause windups and the problems in the perfommce of the system are solely due 

to the effects of the saturation upon the direction of the control vector. 

.3IT, the control direction at saturation drives the system 

-.3IT resulting in oscillatory behavior. The compensator does not have any 

Comparing the outputs, i.e. figures 4.7 and 4.10, we see that the shapes of the outputs in 

figure 4.10 do not match those desired and shown in figure 4.7. Thus, in this case the impact 

of saturation has produced an unacceptable output response. 

State trajectory for the academic example vith r=[. 3 . 3IT 

-3.00 -1.80 -0.60 0.60 1.80 3.00 

xl 

Figure 4.9: State trajectory of the compensator states in the system with saturation, (r = [.3 .3IT). 
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Academic example with saturation f 1 

0.00 2.00 4.00 6.00 8.00 10.00 
Time (sec.) 

Figure 4.10: Output response for the system with saturation, (r = [.3 .3]T). 

Academic example with saturation f 1 
4.00 

1.80 

5 -0.40 

-2.60 u 

-4.80 

-7.00 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 4.11: Controls in the system with saturation, (r = [.3 .3]”). 
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Figure 4.12 shows the compensator state trajectory for the simulation of the system with 

saturation and the EG operator. The states of the compensator do remain within the BA,, set 

so control saturation is not expected. In fact, the state trajectory remains on the boundary of the 

BA,c set for a long period of time which implies that the controls will stay at their maximum 

level for a long period of time. 

Figures 4.13 and 4.14 show the response of the outputs and the controls respectively. 

Note that the controls (the inputs to the saturation operator) do not cause saturation. Also note 

that when u2 reaches the value of - 1, the control u1 is reduced to the appropriate level so that 

both controls will drive the output towards [.3 .3IT as desired. In effect, it is like having a 

"smart multivariable saturation" instead of the SISO saturations in each channel. The net effect 

can be seen easier in the output responses. Comparison of figure 4.13 with figure 4.7, shows 

that the outputs have similar shapes (as desired), except that the outputs in figure 4.13 are 

"slower" because the control magnitudes are smaller than those in the linear case (compare 

figures 4.8 and 4.14). 

state trajectory for the academic example uith r=[ . 3  . 3  1' 

x2 

1.75 

1 .05 

0.35 

-0.35 

- 1.05 

- 1.75 
-1.75 -1.05 -0.35 0.35 1.05 1.75 

Figure 4.12: State trajectory of the compensator states in the system 
with saturation and the EG, (r = [.3 .3IT). 
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0.40 

0.30 

2 0.10 
0 

0.00 

-0.10 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 4.13: Output response for the system with saturation and the EG, (r = [.3 .3IT). 

Academic example with r =[. 3 .3] 
1 .SO 

0.90 

* 0.30 Y 
2 
-0.30 u 

-0.90 

- 1 .SO 
0.00 2.00 4.00 6.00 8.00 10.00 

?'ime (sec.) 

Figure 4.14: Controls in the system with saturation and the EG, (r = [.3 .3IT). 



Chapter 4 Page 92 

Figure 4.15 shows the real-time behavior of the gain h(t), computed on-line with the 

method described in section 4.2.2, and used as the EG operator. At the beginning, h(t) is 1 and 

the system is linear. When the states of the compensator are such that they may lead the 

controls to saturate, h(t) becomes zero preventing the large errors to be driven by the 

compensator. The controls at the same time remain at their maximum possible level ( Ilu(t)ll, = 

1 ). Eventually, h(t) allows the compensator to accept more and more error, while at the same 

time the controls are kept at maximum level. At the end, h(t) becomes 1 and the system 

becomes linear time invariant again. 

A (t) for the academic example with r =[ . 3  . 3  1 
1.10 I 1 

Figure 4.15: h(t) in the system with saturation and the EG, (r = [.3 .3IT). 

Insert: Blowup with (KtS1.5 sec. 

Sometimes the exact BA,, set is difficult to compute and to store in a closed form so 

approximations may be necessary, especially for compensators of large order. Consider an 

approximation for the BA,c set, B'A,c, which is an ellipse given by eq. (3.13). Using this 

ellipse approximation the same simulation (r = [.3 .3]T> was performed. Of course, the state 
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trajectories should not be expected to remain within the approximate BtA,C. 

The B'A,c here was computed off-line (see eq. (3.13)) and then the on-line computation 

(described in section 4.2.2) of h(t) was minimal. Using the Macintosh 5 12K the computation 

for this simulation required only a few minutes. 

Figure 4.16 shows the approximate B'A,C with the state trajectory of the compensator 

states for the system with saturation and the EG operator. Figure 4.17 shows the actual BA,,, 

the approximate B'A,,, and the state trajectory of the compensator states. The state trajectory 

does not remain inside BA,, for all t and the controls are expected to saturate a bit. The amount 

that the controls will saturate and the amount that the state trajectory will go outside the BA,C 

set depends on how good the approximation is. 

State trajectory for the academic example with r =[. 3 . 3IT 
1.75 

1 .os 

0.35 

-0.35 

- 1 .os 

- 1.75 
-1.75 -1.05 -0.35 0.35 1.05 1.75 

x2 

Figure 4.16: State trajectory of the compensator states in the system 

with saturation and EG using the approximate B'A,c set, (r = [.3 .3] ). T 
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state trajectory for the academic example uith r =I. 3 . 3  J 

x2 

1.75 

1 .05 

0.35 

-0.35 

- 1 .05 

- 1.75 
-1.75 -1.05 -0.35 0.35 1.05 1.75 

x1 

Figure 4.17: State trajectory of the compensator states in the system 

with saturation and EG using the approximate B'A,C set, (r = [.3 .3] ). 
T 

Figure 4.18 and figure 4.19 show the output response and the controls for the simulation 
T with r = [.3 .3] . By comparing figures 4.13-4.14 with figures 4.18-4.19 one can see that 

the response of the system with the h(t) computed using the approximate B'A,c is similar to 

the response when the actual BA,C was used. Note that u2 saturates for a smaU period of time 

(Iluz(t)ll= 1.08). The amount that the controls exceed the saturation limits depends on how 

good the approximation of the B A , c  set is. Again, u1 is reduced when the states of the 

compensator reach the boundary of B*A,c. 
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Academic example (approximate A (t)) 
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0.20 $2 
s 0.10 
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0-0° lk" 
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-0.10 
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Figure 4.18: Output response for the system 
with saturation and EG using the approximate B'A,C set, (r = [.3 .3IT). 

Academic example (approximate A (t)) 
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Figure 4.19: Output response for the system 
with saturation and EG using the approximate B'*,c set, (r = [.3 .3IT). 
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For the same system, the academic example #1, another simulation was performed with 
T referencer=[O 31 . 

Figures 4.20 and 4.2 1 show the outputs and the controls of the linear closed loop 

system. Again the linear system is assumed to meet all specifications. One can see that the 

oscillatory mode of the compensator does not show in the output because it is canceled by the 

plant. The controls do have oscillatory behavior and that is how the coII]sensator cancels the 

resonant zeros of the plant. This cancellation process is what the multiple saturation prevents 

and the purpose of this simulation is to illustrate exactly that. 

Figures 4.22 and 4.23 show the output and the controls of the system with saturation. It 

is clear from the responses that the saturation ruins the cancellation of the plant resonant zero 

from the compensator. 

Figures 4.24 and 4.25 show the output and the controls of the system with saturation and 

the EG operator. By comparing figures 4.20 and 4.21 with figures 4.24 and 4.25 one can see 

that the response of the system with saturation and the EG is similar in nature (and slower) to 

the response of the linear system. In this case both ul and u2 reached their maximum allowable 

value. When this happened, in both cases, the other control was adjusted in a Special way to 

drive the output towards [0 3IT. 

Figure 4.26 shows the X(t) that resulted in the responses of figures 4.24 and 4.25 while 

figure 4.27 shows the state trajectory of the compensator states. The state trajectory "hit" the 

boundary of B,,, twice and that is why k(t) in figure 4.26 was drastically decreased fiom 

unity twice, at about t = 0 and t = 1 seconds. 
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Figure 4.20: Output response for the linear system, ( r = [0 3IT ). 

Academic example with r=[ 0 31' 
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Figure 4.21: Controls in the linear system, (r = [0 3IT). 
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Academic example uith r =[ 0 31' 

0.00 2.00 4.00 6.00 8.00 10.00 
Time (sec.) 

Figure 4.22: Output response for the system with saturation, (r = [O 3IT). 

Academic example uith r=[ 0 31' 
10.00 

6.80 

3.60 

3 0.40 

u 
-2.80 

-6.00 
0.00 2.00 4.00 6.00 8.00 10.00 

TImc (Sec.) 

Figure 4.23: Controls in the system with saturation, (r = [0 3IT). 
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Figure 4.24: Output response for the system with saturation and the EG, (r = [O 3IT). 
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Academic example with r =[ 0 31 
2.00 

0.00 2.00 4.00 6.00 8.00 10.00 
Time (sec.) 

Figure 4.25: Controls in the system with saturation and the EG, (r = [0 3IT). 
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1.10 

0.88 

0.66 
A (t) 

0.44 

0.22 

0.00 

A (t) for the academic example with r =[ o 3 lT 

0.0 
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Figure 4.26: h(t) in the system with saturation and the EG, (r = [0 31'). 

Insert: Blowup with 0 S t S 2.5 sec. 

State Trajectory for the academic example with r=[ 0 31' 
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Figure 4.27: State trajectory of the compensator states far the system 

with saturation and the EG, (r = [0 37). 
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-0.8 -.OOO6 -12 0 - -19 -3 - 

0 -.014 -16.64 -32.2 -.66 -.5 

-.16 -.5 1 -.0oO1 -1.5 0 

1 0 0 0 0 0 

u p  x(t) + 

- d - 

4.2.4 Simulation of a Model of the F8 Aircraft 

The purpose of this example is to illustrate the effects of multiple saturations on the 

directions of the controls and consequently on the response of the control system and the 

integrator windup phenomenon. The simulation confirms our claim that the integrators in the 

control system with the EG never windup, and that the saturation does not effect the direction 

of the controls when the EG operator is used. 

Consider a model of the longitudinal dynamics of the F8 aircraf~ A flaperon has been 

added which does not exist in the F8 prototype. The state equations are given by 

0 0 0 1  

0 0 - 1 1  Y(t) = [ ] x(t) 

u,(t) = sat(u(t)) 

and in compact form 

(4.35) 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

where 
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- 
so)  pitchrate(dsec) 

v(t) forward velocity (ft/sec) 

a(t) angle of attack (rad) 

- e(t) pitch angle (rad) - 

I 6e(t) elevator angle (deg) limit at 25O 

6At) hperon angle (deg) limit at ZO 

1 e(t) pitch angle (rad) 

Controls u(t) = 

r(t) fight path angle (rad) 
Outputs y(t) = 

Singular values of the F8 model 

0.01 0 .1  1 .o 10 100 
bg 0 (Ildlsec) 

Figure 4.28: Singular values of the F8 model. 

(4.40) 

(4.41) 

(4.42) 

Figure 4.28 shows the singular values of the F8 linear model. The model has four stable 

poles and one transmission zero as it is shown in Table 4.3. Assume that a closed loop system 

has to be designed for the F8 model to follow pitch and flight path angle commands. Also 
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assume that zero steady state error is required for step commands. The control system to be 

designed, should be thought as a semi-realistic MIMO controller so as to test the new design 

methodology introduced in this section. 

The design process is the following. First, linear control theory will be used to design the 

closed loop system. Then the linear compensator will be modified with the EG operator. 

Finally, simulations of the closed loop system will be performed to assess the benefits of the 

new design methodology. 

le 4.3 P u  zeros of the F8 m a  

Poles 
Rea I magi nary Hagn i tude Damp i ng 

-5.7744E-03 2 6425E-02 2.7049E-02 2.1348E-01 
-5.7744E-03 -2 6425E-02 2.7049E-02 2.1348E-01 - 1. 15 12E+00 3.4464E+00 3.6336E+00 3.1683E-0 1 
-1.1512E+00 -3.4464E+00 3.6336E+00 3.1683E-01 

zeros 
Rea I I magi nary Hagn i tude Damp i ng 

-1.3900E-02 0.0000E-01 1.3900E-02 l.OOOOE+OO 
3 more infinite 

To obtain the required linear control system the saturation is ignored (u,(t) = u(t)) and, 

two integrators were added at the controls. The augmented system (sixth order) is given by the 

following 

(4.43) 

(4.44) 

I 
u(t) = - ua(t) 

S 
(4.45) 

where 
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Next, a linear compensator was designed for the augmented system to control the pitch 

angle and flight path angle. The LQGLTR methodology was used to design the compensator 

which is computed as follows:. 

Where 

H =  

-344 .819 

-11.54 13.47 

-.86 .25 

-47.4 15 

4.68 -4.8 

4.82 .14 

(4.46) 

(4.47) 

I -52.23 -3.36 73.1 -.ooo6 -94.3 1072 

-3.36 -29.7 -2.19 -.MI6 908.9 -921 

The LQGLTR compensator K(s) has six poles and four transmission zeros as it shown 

in Table 4.4; note that it is stable and that cancels part of the F8 dynamics. Erom now on we 

assume that the G(s)K,(s) is the desired forward loop transfer matrix, and that we would like 

to mimic (to the extent possible) the transient response of this linear feedback system even in 

the presence of saturations. Figure 4.29 shows the singular values of the resulting loop transfer 

function matrix G(s)K,(s). 
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le 4.4 Poles -0s of the F8 linear co- 

Poles 
Rea I I mag i nary Hagn i tude Damp i ng 

-1.3900E-02 0.0000E-01 1.3900E-02 1.0000E+00 
-1.7507E+01 1.7683E+01 2.4884E+01 7.0357E-01 
-1.7507E+01 -1.7683E+01 2.4884E+01 7.0357E-01 - 1.4 195E+O 1 2.5572E+0 1 2.9248E+O 1 4.8534E-0 1 
-1.4195E+01 -2.5572E+01 2.9248E+01 4.8534E-01 
-3.0585E+01 0.0000E-01 3.0585E+01 1.0000E+00 

zeros 
Rea I I mag i nary Hagn i tude Damp i ng - 1 .3964E-02 0.0000E-0 1 1.3964E-02 l.OOOOE+OO 

-6.1540E-02 0.0000E-01 6.1540E-02 1.0000E+00 
-9.6500E-01 3.3244E+00 3.4617E+00 2.7877E-01 
-9.6500E-01 -3.3244E+00 3.4617E+00 2.7877E-01 
2 more i n f i n i t e  

Loop singular values 
E+04 

100 

3 
Y ‘E! 1.0 

b4 

0.01 

E-04 
0.01 0 .1  1 .o 10 100 

log o (radlsec) 

Figure 4.29: Singular values of the loop transfer function in the F8 closed loop system 

To prevent control saturations, the Error Governor (the h(t) time-varying gain) is added 

to the feedback system at the error signal e(t). The construction of h(t) is possible because the 

compensator K(s) is neutrally stable and finite gain stability is guaranteed because in addition 

the plant G(s) is stable. Figure 4.30 shows the closed loop system for the F8 model with the 

EG operator. 
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h G o v e r n o r  sat I 
(EG) 

Figure 4.30: Closed loop system for the F8 example with the EG. 

The result is a multivariable control system with integrators in the forward loop. In the 

presence of saturation, and without the EG operator, integrator windups would be expected 

and the direction of the control vector would be distorted. 

Three different simulations were performed to evaluate the design methodology. The EG 

operator in these simulations was computed entirely on-line as discussed in section 4.2.2. The 

simulations were performed in the Macintosh 512K and the computation of the EG operator 

required approximately eight hours. 

First, the closed loop system was simulated with reference vector r = [ 10 101T. 

Figures 4.31 and 4.32 show the linear output and control responses. As expected from the 

singular values of G(s)K&), both outputs behave similarly and it is assumed that this type of 

an output response satisfies the posed constraints. Note that the controls have "impulsive" 

action at the beginning, and they violate the 3 2 5 O  limit; thus saturation is expected. 

Figures 4.33 and 4.34 show the outputs and controls of the system with saturation. From 

the oscillations in the output response it can be inferred that the integrators windup. In addition, 

the direction of the output is disturbed and the outputs are "not matched" any more (compare 

figures 4.3 1 and 4.33). 

Figures 4.35 and 4.36 show the output and control responses of the system with 

saturation and the EG operator. Compare figures 4.31 and 4.35 and notice how the outputs are 

similar in shape (as it was desired), in addition to the fact that there are no integrator windups. 
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The output response has of course slower rise time, since we must use smaller controls, but the 

nature of the response is similar to the linear one. The controls u(t) in figure 4.36 never exceed 

the limits of the saturation; and when the flaperon SLt) reaches 25' the elevator 6Jt) remains 

almost constant until 6&) unsaturates. The direction of the controls during that period of time is 

such that drives the plant output towards the command [lo 

having "a smart multivariable saturation". 

l0IT. The system behaves like 

Figure 4.37 shows the h(t) that was computed with the method described in sections 

4.2.1 and 4.2.3. Note that the error is almost completely "turned-offl at about .05 seconds. 

The gain k(t) then increases slowly towards unity and the system operates linearly again. 
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Figure 4.31: Output response for the F8 linear system, (f = [ 10 10 11). 

Controls in the F8 closed loop system with r=[ 10 lo] ' 
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Figure 4.32: Controls in the F8 linear system, (r = [ 10 10 1'3. 
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Output of the closed loop system uith r =[ 1 0 1 03 -I 
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Figure 4.33: Output response for the F8 system with saturation, (r = [ 10 10 19. 

ControlsintheF8closedloopsystemuithr=[lO lo]' 
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Figure 4.34: Controls in the F8 system with saturation, (r = [ 10 10 IT). 
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OutputintheF8closedloopsystemvithr-[ 10 lo]' 
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Figure 4.35: Output response of the F8 system with saturation and the EG, (r = [ 10 1019. 

Controls in the F8 closed loop system vith r=[ 1 0 lo] ' 
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Figure 4.36: Controls in the F8 system with saturation and the EG, (r = [ 10 1019. 
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A (t) for the F8 closed loop with r=[ 10 10 ] 
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Figure 4.37: k(t) in the F8 system with saturation and the EG, (r = [ 10 

Insert: Blowup with 0 S t S .75 sec. 

101’9. 

t 

A second simulation was performed with the F8 feedback system with the references 

being r = [ 0 5]T which corresponds to a command for a constant flight path angle, keeping 

the fuselage pitch zero (at aim). Figures 4.38 through 4.44 show the responses obtained from 

this simulation. Similar conclusions can be made from this set of simulations regarding the 

benefits of the EG operator. The EG operator eliminates windup problems and makes the 

outputs mimic those of the purely linear design (compare figures 4.38 and 4.42). 
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Output of the F8 closed loop system vith r =[ 0 51 
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I 

Figure 4.38: Output response for the F8 linear system, (r = [0 519. 

Controls in the F8 closed loop system vith r ..[ 0 SJ * 
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Figure 4.39: Controls in the F8 linear system, (r = [O 519. 
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Output of the F8 closed loop system with r=[ 0 5 1' 
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Figure 4.40: Output response for the F8 system with saturation, (r = [O 5IT). 

Controls in the F 8 closed loop system uith r =[ 0 51 
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Figure 4.41: Controls in the F8 system with saturation, (r = [0 5IT). 
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Output for the F8 closed loop system uith r =[ 0 5 ] 
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Figure 4.42: Output response for the F8 system with saturation and the EG, (r = [0 SIT). 

Control for the F8 closed loop systemvithr4 0 SIT 
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Figure 4.43: Controls in the FS system with saturation and the EG, (r = [0 5IT). 



I Chapter 4 Page 115 

A(t) for the F8 closed loop with r =[ 0 51 
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Figure 4.44: h(t) in the F8 system with saturation and the EG, (r = [0 

Insert : Blowup with 0 S t S .5 sec. 

5IT). 

4.3 Concluding Remarks 

In this chapter a new design methodology, the EG operator, has been introduced and 

illustrated for plants with multiple control magnitude saturations. The new control structure is 

useful for control systems with stable open loop plants and neutrally stable compensators. 

The controllers that arise from the new methodology never cause the controls signals to 

saturate and, consequently, integrator windups are not possible. In addition, the proper 

direction of the controls (altered by saturation) is restored with the new controller. These 

desirable properties hold for any reference and input or output disturbance signal. 

The new design methodology was demonstrated for an academic example and for a 

model of the F8 aircraft. In both cases, the control systems had the properties promised by the 
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methodology and the performance of the designs was substantially improved, compared with 

the uncompensated control system with multiple saturations. 

I 

i 



chapters Page 1 17 

CHAPTER 5 
CONTROL STRUCTURE WITH THE OPERATOR RG 

5.1 Introduction 

In this section we introduce two new control structures for plants with saturating 

actuators. The first control structure includes a Rate Governor (RG) operator (Le. a time- 

varying rate) at the refance signals. This new controller can be used for any stable linear 

closed loop system. An analysis of the effects of the RG operator on the closed loop system 

will be performed. A second control structure includes both the EG and RG operators and it 

can be used for any linear feedback system with a neutrally stable linear compensator. 

In both the control structures the idea is to keep the system linear when the references 

and/or the disturbances are "small". The operators RG and/or EG will ensure that for "large" 

exogenous signals the control signals never saturate. 

The new control structures have inherent properties (BIB0 stability, no integrator 

windups etc.) which will be discussed and demonstrated via a simulation of the unstable F16 

aircraft. 

5.2 Description of the Control Structure with the Operator RG 

The control structure with the operator EG, described in chapter 4, can be applied to 

modify linear control systems with stable plants and neutrally stable compensators. The 

structure cannot be used for feedback systems with unstable plants or unstable compensators. 

Thus, a new design procedure is needed to handle these systems. A proposed structure is 

shown in figure 5.1 where a Reference Governor will mask out "large" references so they will 

not enter into the closed loop system. Choosing the Reference governor appropriately one can 
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ensure that the controls never saturate so that the feedback system operates linearly. 

compensator saturation ptant 

Figure 5.1: Control structure with the RG operator 

To facilitate our discussion let us assume the following models for the systems shown in 

figure 5.1. 

where r(t) are the reference signals, y(t) are the output signals, u(t) are the control signals 

generated by the compensator, u,(t) are the saturated (output of the saturation ) control signals. 

In addition, consider the linear closed loop system (i.e the system without the saturation) 
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with the controls as output and assume the following representation 

where x c l = [  'j 

Observing closely the closed loop representation, eqs. (5.7)-(5.8), one may think that the 

time-varying gain h(t) can be used as a Reference Govemor. This is reasonable because the 

system (5.7)-(5.8) is linear, its input is the reference signal r(t) and its output is the control 

signal u(t). Therefore, the time-varying gain X(t) can be used to modify the references so that 

the controls never saturate. 

Although the above reasoning is true, the resulting control system would be very 

conservative in the following sense. The states of the closed loop system, and thus the outputs, 

cannot reach "large" values to track analogous "large" references because if the references are 

reduced suddenly, the controls will saturate. For example, assume the case where a step 

reference of r is to be followed, also assume that the required linear controls, to track r, exceed 

their limits for some time, and that their steady state value are within the saturation limits. If it 

was possible, with h(t), to track such reference without saturating, the following would be 
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true. At steady state, one could change the reference from r to 0 and h(t) would not modify the 

reference signal, consequently the controls would saturate. The construction of h(t) guarantees 

that the controls never saturate so the system would not be able to follow the "large" reference r 

and instead it would follow a reference smaller in magnitude. 

The objective of any control system is to keep the tracking error e(t) "small", therefore in 

the Error Governor case the time-varying gain h(t) can be used without any problems. In 

addition to the magnitude of the references, the RG operator should be able to modify the rate 

as well. In such a case, possible reductions in the references would not cause any problems 

because the rate of the reduction could be modified. 

Following the discussion of section 3.4 one can inject a time varying rate p(t) at the 

inputs of a linear time invariant system and the outputs of that system will remain bounded. 

Consider the closed loop system (5.7)-(5.8) and assume that a time-varying rate (5.9)-(5.11) is 

introduced at the references as shown in figure 5.2 

Figure 5.2: The basic system for calculating p(t). 

(5.9) 

(5.10) 

(5.1 1) 

As in section 3.4, the time varying gain p(t) will be chosen so that if r(t) is small enough 
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never to cause control saturation then r(t) = rp(t), in contrast, if r(t) is large, then p(t) will limit 

the references so that the controls will remain bounded. We now combine the dynamics of the 

rate limiter (5.9)-(5.11) with the dynamics of the closed loop system (5.7)-(5.8) to obtain an 

augmented system 

(5.12) 

(5.13) 

where 

z(t) 0 0  

= [ xc,(t) ] [ Be, A.] 
B. = [ :] ca=[ 0 Cd]  

The objective here is to construct p(t), 0 5 p(t) 5 -, in such a way so that for any error 

e,(t) the controls u(t) never saturates. This is similar to designing a time-varying rate so that the 

output of a linear system remains bounded (section 3.4). At first, a function g(x) and a set 

BA,c have to be defined. The symbols g(x) and B&c should be thought as generic symbols 

and, when they are used, they are always defined to avoid confusion. 

(5.14) 

(5.15) 

(5.16) 

For the function g(x) to be finite the linear system in eq. (5.15) has to be neutrally 

stable. This is always true for any compensator and any plant provided that the linear closed 
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loop system is stable. Even if the plant is unstable the compensator has been designed to 

stabilize it and the system (5.15) is always neutrally stable. Therefore, the Reference Governor 

can be used in all cases as shown in table 3.1. With g(x) neutrally stable, as in section 3.4, the 

construction of p(t) is given by: 

~ 

Construction of Mt): 

For every time t choose p(t) as follows 

a) if xa(t)E IntBA,c then p(t) = - which implies that r(t) = rp(t) 

b) if xa(t)E BdBA,c then choose the largest p(t) such that 

(5.18) 

(5.19) 

I 0 5 v(t) s Q9 
I 

E 4  e (5.20) 

or for the points where g(x) is differentiable choose p(t) such that 

0 s p(t) s 00 

Dg(x,(t))[Aaxa(t)+Ba~~(t)e,(t)] 5 0 v t > 0 

(5.21) 

(5.22) 

where Dg(Xa(t)) is the Jacobian matrix of g(xa(t)) as in definition 3.2. 

C) if Xa(t)Z BA,C then choose p(t), 0 5 p(t) S - such that the expression (5.20) is 

minimum. 

The closed loop system with the RG operator (shown in figure 5.3) has the following 

good properties. 

a) The controls in the closed loop system will never exceed the limits of 

the saturation and thus the direction of the control vector is not affected by the saturation. 

Hence, any inversion of the plant by the compensator is not prevented. 

b) Integrators or slow dynamics in the compensator do not windup. 
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The main disadvantage of this method is that the construction of p(t) requires the 

measurement of the plant states. More research is needed to assess if estimates of the states can 

be used to approximate the real p(t). The computational requirements for the operator RG are 

larger that the ones for the operator EG. This is so because h(t) is computed using the 

compensator states while p(t) is computed using both the states of the plant and the 

compensator. In section 5.2.2 the computation requirements for p(t) will be discussed in detail. 

As it was stated previously, this control structure can be used for any plant and any 

compensator as long as the linear closed loop system is stable (true for all sensible control 

systems). Because it is more difficult to compute p(t) than h(t), it is recommended to use the 

control structure with the operator RG in feedback system with unstable plants and/or unstable 

compensator only. 

Figure 5.3: Control structure with the operator RG. 

5.2.1 Stability Analysis for the Control Structure With the RG 

The simple closed loop system form r(t) to r,(t) (which is part of figure 5.3) is given by 
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(5.23) 

(5.24) 

The system (5.23)-(5.24) is a BIBO stable system, Le. for bounded r(t) the signal r,(t) is 

also bounded. This can be shown f o d y  by using Lyapunov stability theory with a 

Lyapunov function of V = zT(t)z(t) where 7 j  = 2p(t)zT(t)(r(t) - z(t)). If r(t) is bounded the 

function is negative definite for large z(t) and thus, z(t) will be bounded. 

With the RG operator the controls never saturate so the system from r,(t) to y(t) (which 

is part of figure 5.3) is a linear system; it is also assumed to be stable since one of the purposes 

of K(s) is to stabilize the linear feedback system. As a result, the control system from r(t) to 

y(t) is BIBO stable. This is an important fact because when the open loop plant is unstable the 

linear control system in the present of saturation may not be BIBO stable for all reference 

signals. 

Since the RG operator is outside of the closed loop system, when disturbances are 

present one cannot guarantee that the control will not saturate. In fact, there always exists a 

disturbance that will cause saturation and instability. The stability theory described in chapter 2 

will now be used to show the trade-offs between "good" command following and "good" 

disturbance rejection. Figure 5.4 show the closed loop system with the RG operator and output 

disturbances. The following analysis was done only for output disturbances, similar analysis 

can be performed for other type of disturbances as well. 



Page 125 1 Chapter 5 

I 

1 

Figure 5.4: Control structure with the operator RG and output disturbances. 

It is clear that if r(t) is chosen so that the controls will reach the saturation limits, then 

there is a disturbance with Ild(t)ll, e E, VE > 0 such that the controls will exceed the limits of 

the saturation. To avoid that, one can introduce an artificial saturation level s = [ s1 

si < 1 and choose p(t) so that the references will never cause the controls of the system to 

exceed the artificial saturation limit s. Then L, bounds can be defined, as we shall do in 

theorem 5.1, for the disturbances so that if the disturbances do not violate those L, bounds the 

controls will always remain within the real saturation limits. 

T s,] with 

In effect, the controls action can be used, partly, to track commands (Ilui(t)ll, I si) and, 

partly, to reject disturbances (Ilq(t)ll, I 1-%). The artificial saturation s is "reserving" part of 

the control action for command following and the rest of the control action is used for 

disturbance rejection. In theorem 5.1 the relationship (trade-offs) between s and the L, bound 

on the disturbances that can be rejected will be given. 

To ensure that only part of the control is used for command following the operator RG 

can be used to guarantee that llui(t)ll, I sk The computation of p(t) for this case is similar to the 

case where the saturation limit is 1. For example, in the computation of p(t) one could scale the 
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llhlllll .... p...]+ s1 [ 
. . . . . . . . . . .  

llhm11I1 .... 'm 

compensator so that the control saturation limits instead of s they would be 1. In the 

implementation, by rescaling the compensator, the actual saturation levels will be s again. 

+ I -  

Theorem 5.1: 

If the RG operator is used in any feedback system so that the controls (Ilui(t)ll, S si), for 

some vector s the following is true. With zero initial conditions, the closed loop system with 

the RG operator will have bounded controls (IIu(t), I 1) and bounded outputs for any 

reference and for output disturbances that satisfy the following condition. 

m c j hlj(t-T)djm 
j=l 0 

............. 

(5.25) 

where hi, is impulse response of the ijb element of the following transfer function matrix 

H(s) = [I + K(s)G(s)]-lK(s) 

proof: 

u(t) = I . . . . . . . . . . . . . . .  

(5.26) 

(5.27) 
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By following similar manipulations as the ones for the proof of Theorem 2.1 one can 

obtain the following 

m m 

Ilu.(t)ll 1 -  S xllh..ll 1J 1 Ilr pj II + xllh..ll 1J 1 Ild]lm (5.28) 
j=l j= 1 

Since rJt) is chosen so that the controls u(t) will never exceed the artificial limit s the 

following is true. 

m 
Ilu.(t)ll 5 Ilhijlll Ild . II + si 

J I =  
j=l 

For the controls to remain bounded (Ilu(t)ll, I 1) the following has to be true. 

Ilu.(t)ll 5 ~ I lh i j l l l  Ild . II + s. S 1 
J m  ' 1 -  

j=l 

(5.29) 

(5.30) 

then eq. (5.30) is a compact version of eq. (5.25). 

Ill1 

From the previous discussion theorem 5.1 can be used to illustrate the trade-offs between 

"good" command following and "good" disturbance rejection. There are two ways to use 

theorem 5.1 

(a) If we know upper bounds on the output disturbances that exist in the operating 
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environment of the control system, the following is true; one can compute the artificial 

saturation s so that all possible disturbances will be rejected. These upper bounds usually come 

from experimental data and the specific operating environment of the system. Then the vector s 

is computed by the following: 

Ilhllttl . . . . tlhlm It, Ild,II 11 
II ' *  

. . ......... 
llhm1ll1 . . . . llh, , ll Ildmlla 

1 

+ [.. 
1 

(5.31) 

An operator RG will be included in the control system to guarantee that the references 

will never cause the controls to exceed the artificial saturation s. In this context, if si, for some 

i, is negative then there exists a disturbance that wil l  cause the system to saturate even if r(t) = 

0 for all t. If si is positive, for all i, then there is a disturbance (dj(t) = tld,(t)lloosign(hij), for 

some i) with magnitude within the specified upper bounds and some reference, to cause the 

controls to reach the limits of the real saturation (kl). In that sense themem 5.1 is not 

conservative. 

(b) If the disturbances are not known then the control designer has to define the artificial 

saturation s. The value of s should be specified so that with, Ilu(t)ll, I s, there is "enough" 

control action far the system to perfoxm (command following) well. One can compute s by 

using experimental data, the srnifications of the control system, and the specific application. 

For example, if we have a stable plant G-l(s), where G-1(0) exists, and it is desired to track 

command with steady state value of r then s = G-l(O)r. With the value of s one can compute 

an upper bound for the disturbances that will never cause saturation (fl) as follows: 
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I 

(5.32) 

From theorem 5.1 (expression 5.25) is evident that the smaller the disturbances (in the 

operating environment of the system) the better the command following. More research is 

needed to find out if the vectors can be time varying so as it adapts to changes in the operating 

environment of the system. For example, if larger disturbances are present for some period of 

time it may be possible to decrease the value of s for that period and allow the controller to 

reject larger disturbances. 

In addition to disturbances, modelling enms can cause the feedback system to saturate 

and thus degrade the performance or even to drive the system unstable. At this point, it is not 

clear how to define a class of modelling errors so that the closed loop system with the RG 

operator will remain stable in the presence of those modelling errors. But one can extent the 

idea for handling the disturbances to the case where modelling errors are present. To be more 

specific, one can adjust the artificial saturation levels sis to lower levels; at the expense of 

command following the stability robustness of the control system will increase. Engineering 

intuition and simulations have to be used to find the exact level of the s;(s and the modelling 

errors that can be handled. 

Remember that with the EG operator for stable %we" plants and/or stable unmodelled 

dynamics stability (finite gain) robustness was guaranteed. That is another reason (in addition 

to the complexity of RG) to use the EG operator instead of the RG operator for control systems 

with stable plants and neutrally stable compensators. 
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The computation of the RG operator can be implemented with similar techniques as the 

ones used to implement the operator EG (in section 4.2.2). The only difference is that the 

augmented system (5.12)-(5.13) is used for the computations instead of the compensator. 

Therefore, the state vector of the augmented system x,(t) is used instead of just the 

compensator state vector q(t) and the reference r(t) is used instead of the error e(t). 

For the RG operator the states of the compensator and the states of the plant have to be 

measured. It may be possible to use state estimates of the plant to compute an approximate p(t) 

and more research is needed in this area to find the effects of the estimates on the computation 

of the operator p(t). 

For the simulations in this chapter the computations were performed on-line in the 

Macintosh 5 12K. 

5.2.3 Simulation of the F16 Aircraft 

As it was described previously the introduction of the saturation in the a closed loop 

system when the open loop plant is unstable can 

(a) cause instability of the closed loop system 

(b) cause integrator windups 

(c) alter the directions of the controls and thus affect the performance of the system. 

The purpose of the next example is to illustrate these problems and to show how the new 

control design method solves these problems. 

Consider a model of the AFTI-16 (Advanced Fighter Technology Integration) aircraft, 

which is a modified F-16 aircraft. The following linear time invariant model is an 

approximation of the aircraft longitudinal dynamics at 3,000 ft altitude and .6 Mach velocity 

WI. 
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x(t) + i t )  = 

and in compact form 

where 

x(t) = 

u(t) forward velocity (ft/sec) 

a(t) angle of attack 

q(t) pitch rate (dedsec) 

e(t) pitch angle (deg) 

[ 6=(t) elevator angle (deg) lirnit at 25' 

y(t) = 1 e(t) pitch angle (deg) 1 

-2.516 -13.136 

-.1689 -.2514 

-17.251 -1.5766 

0 0 

Us(t) 

(5.33) 

(5.34) 

(5.35) 

(5.36) 

(5.37) 

(5.38) 

(5.39) 



Chapter 5 Page 132 

As shown in Table 5.1 the model has three unstable poles, one stable one and one 

minimum phase transmission zero. Figure 5.5 shows the singular values of the F16 linear 

model. Assume that we wish to design a closed loop system so that the F16 follows angle of 

attack and pitch attitude with zero steady state m r  required for step commands. 

5.1 Po- zeros of the F16 m o u  

Poles 
Rea I I mag i nary Hagn i tude Damp i ng 

7.5054E-03 6.8019E-02 6.8432E-02 -1.0968E-01 
7.5054E-03 -6.8019E-02 6.8432E-02 -1.0968E-01 
5.4533E+00 0.0000E-01 5.4533E+W -1.0000E+W 

-7.6638E+00 0.OOOOE-01 7.6638E+00 1.0000E+00 

zeros 
Real Imaginary Hagnitudc Damp i ng 

-5.4188E-01 0.0000E-01 5.4188E-01 1.0000E+00 
3 more infinite 

Singular values of the F 16 model 
E+05 

1 OW 

0 .1  
4” 

0.001 
0.01 0 .1  1 .o 10 100 

log w (mdlsec) 

Figure 5.5: Singular values of the F16 model. 

Linear control theory will be used to design the closed loop system, then the linear design 
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will be modified as indicated in section 5.2 with a time varying rate p(t). Finally, simulations 

will be performed to assess the benefits of the new design methodology. 

To obtain the linear closed loop system, integrators have to be added at the controls; and 

the augmented system is given by the following 

e 

IK ,<t) = A8X8(t) + B8U8(t) 

Y(t) = C,x,(t) 

I 
u(t) = - U8(t) 

S 

where 

A =  
8 

0 0  

B A  ] '41 'a'[' '1 

(5.40) 

(5.41) 

(5.42) 

A linear compensator was designed for the augmented system to control the angle of 

attack and the pitch angle tracking errors. The LQGLTR methodology was used to design the 

compensator, whose numerical specification is as follows: 

K(s)=G[ sI-A,-BaG-HCa]-'H 

I 
K8(s) = - K(s) 

S 

(5.43) 

(5.44) 
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H =  

1.6144 

-7.1687 

-15.808 

5.924 

37.0141 

5.1557 

-2.5463 

7.5901 

149.5065 

5.1557 

40.7261 

7.4747 

r 56.3 

= 1 8.37 

8.37 

19.2 

. 0 1 4  -535.6 

,0115 -791.35 

-88.67 

-12.96 

-908.22 

418.46 

Table 5.2 shows the poles and transmission zxms of the compensator. Note that the compensator 

partially inverts the stable part of the open loop plant. To be more specific, the cOmpensator cancels 

the stable pole and the minimum phase transmission zero of the plant. 

ble 5.2 P m o s  of the F16 linear c-ator 

B?kS 
Real Imaginary Hagnitude Damp i ng 

-5.4 188E-0 1 0.0000E-0 1 5.4 188E-0 1 l.OOOOE+OO 
-1.3184E+01 2.3468E+01 2.6918E+01 4.8980E-01 
-1.3184E+01 -2.3468E+01 2.6918E+Ol 4.8980E-01 
-2.9587E+01 0.0000E-01 2.9587€+01 1.0000E+W 
-9.7553E+01 9.7639E+01 1.3802E+02 7.0680E-01 
-9.?553E+01 -9.7639E+01 1.3802€+02 7.0680E-01 

zeros 
Rea I I mag i nary Hagn i tude Damp i ng 

-5.4485E-01 0.0000E-01 5.4485E-01 l.OOOOE+OO 
-4.9996E+00 1.6683E+00 5.2706E+00 9.4858E-01 
-4.9996E+00 -1.6683E+00 5.2706E+00 9.4858E-01 
-7.2543E+00 0.0000E-01 7.2543E+00 1.0000E+00 
2 more infinite 
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0.01 0 .1  1 .o 10 100 
log o (radlsec) 

Figure 5.6: Singular values of the loop transfer function in the F16 closed loop system. 

Figure 5.6 shows the singular values of the loop transfer function matrix G(s)K(s) of the 

linear control system. It is assumed that the G(s)K(s) loop is the desired forward loop transfer 

matrix. If it is not, then the linear compensator has to be redesigned. Figure 5.7 shows the 

control feedback system with the RG operator. 

Figure 5.7: Closed loop system for the F16 example with RG. 
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We now .A with a mu ivariable control system for an unstable open loop plant with 

integrators and a saturation element in the forward loop. Without the RG operator the control 

system is expected to have the following problems (a) for certain references r(t) the outputs 

y(t) will be unbounded, (b) integrator windups may be present, and (c) the saturation can alter 

the direction of the controls and thus degrade the transient performance of the system. 

Three types of simulation were performed for the closed loop system shown in figure 

5.7. These different types of simulation are the following: 

1) The first simulation is for the linear system. Again we assume that the 

compensator K(s) we designed yields desirable linear responses. 

2) In the second simulation the saturation element is added to the linear system, 

u,(t) = sat(u(t)), without any other modifications. This simulation is referred to 

as the simulation for the system with saturation. 

3) In the third simulation u,(t) = sat(u(t)), and p(t) is computed entirely on-line by 

the method given in section 5.2.2. The simulation was performed in a 

Macintosh 5 12K and it required approximately 15-16 hours. This simulation is 

referred to as the simulation of the system with sawation and the RG. 

At first, the linear system was simulated for r = [ 0 lOlT corresponding to a loo pitch 

angle with zero (trim) angle of attack. Figures 5.8 and 5.9 show the output and control 

responses of the linear system. Note that the controls have "impulsive" action at the beginning 

and they exceed by far the 2 5 O  limits so saturation is expected. Also note that the maximum 

flaperon control value is approximately 8 3 O .  

We remark that the quality of the linear output transients (figure 5.8) are not particularly 

"nice" due to the overshoots present. However, for the sake of comparisons that follow we 

shall assume that they represent desirable shapes. 

Figures 5.10 and 5.1 1 show the output and control responses of the system with 
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saturation. The closed loop system for the reference input r = [ 0 l0IT is unstable. Note that, 

in general, when the open loop system is unstable and saturation at the controls is present the 

resulting control system is only locally stable. 

Figures 5.12 and 5.13 show the output and control responses of the system with 

saturation and the RG operator. The stability of the closed loop control system is recovered and 

the shape of the transient response is similar ( but slower, as expected) to the linear response. 

Compare figures 5.8 and 5.12; they are almost identical !!!. Also, the controls u(t) never 

exceed the saturation limits, as guaranteed by the design methodology. 

Figure 5.14 show the modified reference rm2(t). Since the first reference is zero the rml(t) 

is zero Vt and it was not plotted. Note that the rd(t), commanded pitch attitude, starts at =3" 

and ramps up to the desired steady state value of 10". The reason that the rd(t) is initially =3' 

is because the linear system with an rd(t) of =3" will have controls with maximum at =25" 

(remember that with an rd(t) of =loo the controls had a maximum value of ~83") .  Then as the 

outputs follow the modified references the r,(t) approaches r(t) in such a way that the controls 

will never exceed the saturation limits. 
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99.0 

60.0 n 
F z 5 30.0 

0.0 

-30.0 

3 
u 

-60.0 

Output y(t) for the F16 closed loop system withr=[ 0 10IT 
18.00 

14.00 

6.00 

-2.00 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 5.8: Output response of the F16 linear system, (r = [0 lOlT). 

Control in the F 16 closed loop system with r =[ 0 1 0 3 

0.0 2.0 4.0 6.0 8.0 10.0 
Time (sec.) 

Figure 5.9: Controls in the F16 linear system, (r = [0 lOlT). 
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Output in the F 16 closed loop system with r =[ 0 10 3 
100000.0 

80000.0 
? 
t! 
E. 60000.0 
z 

40000.0 =r 
0 

20000.0 

0.0 
0.00 2.00 4.00 6.00 8.00 10.00 

?'ime (sec.) 

Figure 5.10: Output response of the F16 system with saturation, (r = [0 lOlT). 
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Figure 5.11: Controls in the F16 system with saturation, (r = [0 lOlT). 
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Output for the F 16 closed loop system with r =[ 0 1 01 
18.00 

14.00 

n g 10.00 
!s 
5 
9 6.00 
0 

2.00 

-2.00 
0.0 2.0 4.0 6.0 8.0 10.0 

Time (sec.) 

Figure 5.12: Output response for the F16 system with saturation and the RG, (r = [0 lOlT). 

Control for the F 16 closed loop system with r =[ 0 1 0 ] 

0.0 2.0 4.0 6.0 8.0 10.0 
Time (sec.) 

Figure 5.13: Controls in the F16 system with saturation and the RG, (r = [0 1OlT). 
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12.0 

9.6 

7.2 

rpJ9 
4.6 

2.4 

0.0 
0 .o 0.2 0.4 0.6 I 

0.0 2.0 4.0 6.0 8.0 10.0 
?'ime(sec.) 

Figure 5.14: rw(t), the commanded pitch, in the F16 system with saturation and the 

RG, (r = [0 lOlT). Blowup: Blowup with 0 I t 5.6. 

A second simulation was performed for the same system with reference 

r = [ 2.5 2.5 IT. Now we are commanding simultaneously 2.5O angle of attack and pitch. 

Figures 5.15 and 5.16 show the output and control responses of the linear system. Again the 

controls exceed the limits of 25O and saturation is expected. 

Figures 5.17 and 5.18 show the response of the system with saturation from the output 

response one can see that the integrators windup although, now, the closed loop system is 

stable. In addition, the direction of the outputs is not similar to the direction of the outputs in 

the linear system and thus the control system does not behave as it was designed to behave. 

Figures 5.19 and 5.20 show the output and control response of the system with 

saturation and the RG. The controls never exceed the limits of the saturation and thus integrator 

windups are not present. The output response verify the absence of integrator windups. The 

output response is slower because of the limited controls but the direction of the outputs is 

similar to that of the linear system. Figure 5.21 show the modified reference rP(t). 
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Output for the F 16 closed loop system with r=[ 2 5  2 5  IT 
7.5 

6.0 

n 

9 4.5 
E. 

1.5 

0.0 
0.0 2.0 4.0 6.0 8.0 10.0 

Time (sec.) 

Figure 5.15: Output response for the F16 linear system, (r = [2.5 2.5IT). 

Control for the F 16 closed loop system with r=[ 2.5 2.5 1' 
20.0 

-28.0 

-40.0 
0.0 2.0 4.0 6.0 8.0 10.0 

Time (sec.) 

Figure 5.16: Controls in the F16 linear system, (r = [2.5 2.5IT). 
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Output for the F 16 closed loop system with r=[ .25 2 5  IT 
7.5 

6.0 

g 4.5 
E. 

E 3.0 
1.5 

n 

0 

E 
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0.0 
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0.0 2.0 4.0 6.0 8.0 10.0 
Time (sec.) 

Figure 5.17: Output response for the F16 system with saturation, (r = [2.5 2.5IT). 

Control for theFl6closedloopsystemwithr=[ 2.5 2.5IT 
20.0 

8.0 
n v E. -4.0 s 
d 

8 -16.0 
u 
-28.0 

-40.0 
0.0 2.0 4.0 6.0 8.0 10.0 

Time (sec.) 

Figure 5.18: Controls in the F16 system with saturation, (r = [2.5 2.5IT). 
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Output for the F 16 closed loop system uith r=[ 2.5 2.5 ] 
6.25 

5.00 

n 3.75 v z 
5 
2.50 

B 
1.25 

0.00 
0.0 2.0 4.0 6.0 8.0 10.0 

Time (sec.) 

Figure 5.19: Output response for the F16 system with saturation and the RG, (r = [2.5 

Control for the F 16 closed loop system with r=[ 2.5 2.5 IT 
20.0 

8.0 

e -4.0 
v z 
n - 16.0 
3 
u -28.0 

-40.0 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 5.20: Controls in the F16 system with saturation and the RG, (r = [2.5 

2.5IT). 

2.SJT). 
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1.2 
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Figure 5.21: rJt) in the F16 system with saturation and the RG, (r = [2.5 2.5IT). 

Another simulation was performed to demonstrate the preservation of the closed loop 

stability and the fact the controls will not saturate ("good" performance) for a certain class of 

disturbances, as it was described in section 5.2.1. An artificial saturation limit s1 = s2 = 20' 

was introduced, the underline assumption here is that 20' of control action is enough for 

command following. It was found by using theorem 5.1 that for any reference r(t) and for 

output disturbances of the form d(t) = [dl(t) 

limits of 25' and stability will be preserved for lldl(t)llm I .5. The simulation was performed 

for the step reference r = [ 0 0IT which was 

0IT the controls will never exceed the saturation 

5IT and a step output disturbance of d = [S 

present for t 2.5 sec. 

Figures 5.22 and 5.23 show the output and the control responses of the system with 

saturation and the RG. Note that system remained stable and the disturbances are rejected as it 

was expected. The controls exceed the 20' limit (the artificial saturation) but they do not exceed 

the 25' limit (the real saturation). Figure 5.24 show the modified references for this simulation. 
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F 16 closed loop system with r=[ 0 5IT and d=[ .5 0 IT 
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Figure 5.22 : Output response for the F16 system with saturation 

and the RG, (r = [0 5IT, d = [.5 01'3. 
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Figure 5.23: Controls in the F16 system with saturation and the RG, (r = [0 5IT, d = [.5 OIT). 
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F16closedloopsystemuithr=[ 0 51' and d=[ .5 01' 
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Figure 5.24: rp(t) in the F16 system with saturation and the RG, (r = [0 5IT, d = [.5 OIT). 

5.3 Control Structure with the Operators EG and RG 

In section 5.2 a control structure with the RG operator has been described to be used in 

feedback systems with plants that are open loop unstable. The control structure is such that for 

any references and for all disturbances in an L, set the controls of the closed loop system will 

not saturate. Consequently, the closed loop system remains linear, integrator windups never 

occur, bounded outputs are guaranteed, and the directions of the controls are not changed by 

the saturation. 

The operation of the closed loop system is linear by the construction of the RG operator. 

Since the disturbances enter the system at points inside the closed loop one may be able to 

reject larger disturbances if the operator EG is added at the error signal. If the EG operator is 



~ 
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beneficial to include to the control structure or not depends on the specific application and the 

kind of disturbances which are present as we shall see in section 5.3.2. 

 operators EG and RG 

If the plant in the control system is stable the EG operator is sufficient to ensure that the 

controls do not saturate for any reference, disturbance and modelling error (see section 4.2). 

Therefore, the RG operator is not needed. The control structure with the operators EG and RG 

is useful only for control systems with unstable plants and neutrally stable compensators. In 

this section the discussion will be centered around unstable plants and figure 5.25 show the 

control structure with the operators EG and RG. The models of the G(s), and K(s) systems in 

figure 5.25 are given in eqs. (5.1)-(5.5). 

Figure 5.25: Control structure with the operator EG & RG. 

Since the plant G(s) is open loop unstable one cannot guarantee BIB0 stability with h(t) 

varying from zero to one (0 5 h(t) I 1). Note that if h(t) = 0 for a finite time, the system is 
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running open loop, and will exhibit the instabilities of the plant. 

The time-varying gain h(t) can be thought as a sector nonlinearity (see eq. 2.2) belonging 

in a sector [ 1,hd where lo is a design parameter. The first priority for choosing ho is to 

guarantee closed loop stability. The multiloop Circle criterion (eq. (2.5), is used to define a 

sector [ l , q ,  &-, I h(t) I 1, such that for any nonlinear gain in the sector the closed loop 

system is stable. Eventually, we will ensure that the controls do not saturate so for the 

definition of ho the saturation element in figure 5.25 will be ignored. In this case, to apply the 

multicircle criterion one has to compute Ci = (1 + &)/2, R, = (1 - &)/2, T(s) = G(s)K(s) and 

then substitute these in eq. (2.5). One can search now for a b, 0 I ho S 1, such that the eq. 

(2.5) is satisfied. 

At this point we have shown that if the controls do not saturate one can choose any time- 

varying gain h(t), & I h(t) I 1, and the closed loop system will be stable. The next step is to 

ensure that the controls will never saturate so that the stability argument (given above) is valid 

and so that the performance of the system will not degrade because of saturations. As shown in 

sections 4.2 and 5.2 one can design the EG and RG operators to do exactly that. The 

construction of h(t), given in chapter 4 has to be modified a little as we show in the sequel. A 

function g(x) and a set BA,c are needed for the computation of h(t) and they are defined as 

follows: 

where 

(5.45) 

(5.46) 

(5.47) 

(5.48) 

For g(x) to be finite, for all x, the compensator has to be neutrally stable. Therefore, the 
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control structure with the operators EG and RG should be used only for feedback systems with 

neutrally stable compensators. Then the construction of h(t) is given by the following 

Construction of Xt): 

For every time t choose h(t) as follows 

a) if xc(t)EIntBA,c then h(t) = 1 

b) if xc(t)E BdBA,, then choose the largest h(t) such that 

x() I h(t) I 1 

(5.49) 

(5.50) 

(5.51) 

(5.52) 
E+O E 

or for the points where g(x) is differentiable choose the largest h(t) such that 

&I h(t) I 1 (5.53) 

Dg(xc(t))[Axc(t)+Bh(t)e(t)l I 0 (5.54) 

c) if x,(t)eBA,, then choose X(t) = &. 

The h(t) alone does not guarantee to keep the controls bounded for any reference, this is 

true because h(t) is chosen in the set & S h(t) I 1. For this reason we introduce the RG 

operator at the reference signals and the time varying rate p(t) will guarantee that the references 

will not cause the controls to saturate. To construct p(t) we assume h(t) = 1 and we follow the 

discussion in section 5.2. In order not to confuse the notation the function and the set needed 

for the construction of p(t) will be called B'A,C and g'(x) and they are defined as follows: 

where 

(5.55) 

(5.56) 

(5.57) 
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(5.58) 

where xa, Aa, C, are defined in eqs. (5.12)-(5.13). 

For the function g'(x) to exist the system (5.56)-(5.57) has to be neutrally stable and as it was 

described, for the system (5.15)-(5.16), this is always true. Then the construction of p(t) 

follows: 

Construction of Mt): 

For every time t choose p(t) as follows 

a) if xa(t)E IntB'A,C then p(t) = - which implies that r(t) = rp(t) (5.59) 

(5.60) b) if x,(t)E BdB'A,, then choose the largest p(t) such that 

0 I p(t) 1 - 
& (5.61) 

or for the points where g'(x) is differentiable choose the largest p(t) such that 

0 I p(t) 5 00 

Dg'(xa(t))[Aaxa(t) + Bap(t)er(t)l 1 0 vt > 0 

(5.62) 

(5.63) 

c) if xa(t)eB'A,c then choose p(t) = 0. 

From the construction of h(t) and p(t) it is clear that if disturbances are not present then 

h(t) = 1, for all t, because p(t) is sufficient to guarantee that the controls will never saturate. So 

h(t) is a gain that is activated only if the disturbances are in such direction so that they can 

cause saturation in the controls. It should be pointed out that since the gain h(t) has a lower 

bound h, there are always large disturbances that will cause saturation. In the next section with 
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the stability analysis of this structure, the trade-offs between disturbance rejection and 

command following will be introduced. The implementation (realization) of the operators EG 

and RG is described in sections 4.2.2 and 5.2.2 and will not be repeated. 

5.3.2 Stability Analv is of r wi th eraorsEGandRG 

If the controls do not saturate with the construction of h(t) as described in the previous 

section, the constant 

loop stability. As a result, closed stability is guaranteed for any reference and in the absence of 

disturbances. This is true because if disturbances are not present then h(t) = 1, Vt, and the 

control structure with EG and RG is the same as the control structure with only RG (see 

section 5.2) where BIB0 stability was ensured 

was chosen (using the multicircle stability theory) to ensure closed 

In the presence of disturbances one has to introduce an artificial level of saturation s ( s = 

[ s1 . . . %IT) as was discussed in section 5.2.1. The EG and RG operator can be chosen so 

that for any reference r(t) the controls will not exceed the artificial saturation s, (Ilui(t)ll, I si). 

Consequently, there will be some control action "reserved" for disturbance rejection (Ilui(t)ll, I 

Si) 

Theorem: 
If the RG and EG operator are used in any feedback system so that the controls (Ilui(t)ll, 

I si), for some vector s, the following is true. With zero initial conditions, the closed loop 

system with the EG and the RG operator and & I h(t) 5 1 will have bounded controls (Ilu(t)ll, 

I 1) and bounded outputs for any reference and for output disturbances disturbances that 

satisfy the following condition. 
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llhlllll . . . . Ilh II Ildlllm 

llhm1ll1 . . . . llh, , l ] [  II IM .. , II oo Is[.;] ........ .lm. 
(5.64) 

where 

hij is impulse response of the ij* element of the following transfer function matrix 

Proof: 

The proof of this theorem is very similar to the proof of Theorem 5.1 and is therefore 

Omitted. 

1111 

Theorem 5.2 is almost identical to theorem 5.1. The only difference is in eq. (5.65) 

where the H(s) transfer function is computed with the gain in the loop. Theorem 5.2 defines 

the trade-offs between command following and disturbance rejection as theorem 5.1 did for the 

control structure with operator RG. In fact with the new H(s), eqs. (5.31) and (5.32) can be 

used to compute the artificial saturation s, knowing the maximum bounds of the disturbances 

(lldjllw, for all j), and vice-versa. 

At the beginning of section 5.3 we claimed that the usefulness of the control structure 

with the operators EG and RG depends on the specific application; with theorem 5.2 

one can quantify that dependence. As specified previously, the constant 

parameter that is chosen by using the multicircle stability criterion, in fact, more than one gain 

may exist such that stability is preserved. It is not known yet if the control loop with the 

is a design 
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reduced gain h(t) (h, I h(t) 5 1,b S 1) performs better, i.e. rejects larger disturbances, than 

the nominal loop (h, = 1); or it may be so that from the many & gains, that guarantee stability, 

one is better than the others for performance. In the sequel theorem 5.1 will be used to choose 

one of those 2+ gains or to keep ho = 1. 

If upper bounds (Ikljll,) on the disturbances are known then the idea is to use different 

Gs (including h, = 1) in eq. (5.65) and with theorem 5.2 to compute the corresponding 

vectors s. Then choose the & that gives the best artificial saturation s. Remember that if s is 

larger, more control action is allocated for command following. 

Similarly, if upper bounds for the disturbances are not known then for a specific vector s 

and different values of b one can compute the corresponding upper bounds on the 

disturbances from theorem 5.2. Then one can choose the & that gives the best disturbance 

rejection (rejection of larger disturbances). 

Because all the signals are vectors it may be true that by choosing a & that increase the 

disturbance rejection or command following for a specific disturbance direction or command 

you make things worst for another directions. That is why the usefulness of the operator EG 

depends on the specific control system ( dependence due to H(s)), the specifications. and the 

direction of the disturbances. 

5.3.3 Simulatioq 

The F16 system that was described in section 5.2.3 will be simulated with the operators 

EG & RG. 

It should pointed out that if disturbances are not present then X(t) = 1, for all t, because 

the RG operator will limit the references and the control will never saturate. Such simulations 

have been done in section 5.2. Here, only the response to disturbances will be considered. 

First, by using the multiloop circle criterion as was discussed in section 5.3.1, it can be 

found that the closed loop system remains stable if any sector nonlinearity, which belong in a 
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sector [ 1,.7], is added at the error signal. This implies that one can choose &, = .7 for the 

construction of the EG operator. It should pointed out that there are other sectors that the gain 

h(t) can belong in and stability will be preserved. The objective here is not to find the best h, 

but rather to show how the control structure with operators EG and RG can improve the 

disturbance rejection properties of the control system if it is compared with the control structure 

with only the operator RG. 

A simulation was performed for a step reference r = [ 0 5IT and a step output 

disturbance of d = [.5 

those in the simulation given in section 5.2 (figures 5.22 and 5.23). Again the artificial 

saturation limit was assumed to be s1 = % = 2oo. 

OIT which was present for t 2.5 sec. These conditions are the same as 

Figures 5.26 and 5.27 show the output and the control responses of the system with 

saturation and the EG & RG. The disturbance is rejected and the controls do not exceed the 20' 

limit (the artificial saturation) where in the previous case (figures 5.22 and 5.23) the controls 

exceeded the 20° limit. Thus it is evident that with the introduction of the EG one can reject 

larger disturbances of the type d(t) = [dl(t) 

directions as indicated in section 5.3.2. Figures 5.28 and 5.29 show the modified references 

and the h(t) used for this simulation. 

OlT. This may not be true for disturbances in all 
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F16 closed loop system withr=[ 0 51' and d=[ .5 01' 
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Figure 5.26: Output response for the F16 system 
with saturation and the EG & RG, (r =[0 SIT, d = [.5 OlT). 
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30.0 

20.0 

t! 10.0 z 

- 10.0 

-20.0 
0.0 1 .o 2.0 3.0 4.0 5.0 

Time (sec.) 

Figure 5.27: Controls in the F16 system with saturation and the EG & RG, (r = [0 SIT, d = [.5 O]T). 
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F16 closed loop systemuithr=[ 0 5 IT and d=[ .5  0 IT 
5.50 

4.40 

3.30 

2.20 

1.10 

0.00 
0.0 1 .o 2.0 3.0 4.0 5.0 

Time (sec.) 

Figure 5.28: rp2(t) the F16 system with saturation and the EG 8z RG, 

F16closedloopsystemuithr=[ 0 5f and d=[ .5 0IT 
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Figure 5.29: h(t) the F16 system with saturation and the EG & RG, 
(r = [0 5]T, d = [.5 019. Blowup: with .24 I t I .4. 
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In this chapter it has been shown how that the operator RG can be used to design control 

systems for plants with multiple saturations. The operator RG preprocesses the reference 

signals in such a way so that the references never cause the controls in the closed loop system 

to saturate. Typically, sudden large step commands are translated by the RG operator into 

slower commands, they look like ramps, so as to allow the limited controls not only to 

stabilize the system but also to eventually track the reference. Thus the signals in the closed 

loop system remain bounded for any reference and if integrators are present in the loop they 

never windup. The control structure with the operator RG can be used in any stable linear 

feedback system. 

In addition, we have shown how to defme input and output disturbance sets so that, if the 

disturbances belong to these sets, then the outputs of the system remain bounded. With this 

new design methodology one can distribute the control action among rejecting disturbances and 

following references as it is needed for specific applications. 

Finally, another control structure combining the operators EG and RG was introduced. 

This control structure can be used in feedback systems with neutrally stable compensators. The 

set of disturbances that are rejected can be potentially larger and thus better control systems can 

be designed. 

The control systems that arise from the new design methodology were used in a 

simulation for the unstable F16 aircraft model and the advantages of the new controllers were 

demonstrated. 
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CHAPTER 6 

COMPARISONS 

6.1 Introduction 

As mentioned previously, prior to the results in this thesis, there did not exist a general 

and systematic way for designing control systems for plants with multiple saturations. Current 

SISO control systems include special logic, in addition to the linear controllers, that try to deal 

with the integrator windup problem. 

One can try to extend these SISO techniques to multivariable control systems. In this 

chapter some integrator antiwindup circuits, which are direct extensions of the SISO 

techniques, will be presented. As one may suspect these extensions are not expected to work as 

well for MIMO systems as they do for SISO systems; this is true because the directions of the 

signals in MIMO systems are also important. But for specific examples they may be successful 

and since they are simple to implement they may be p r e f d  over our new design 

methodology presented in chapters 4 and 5. 

In this chapter comparisons will be given between the new control design methodology 

and the conventional antiwindup circuits. These comparisons will be performed for two 

specific examples: An other academic example with peculiar directional properties, due to 

Doyle et al[30], and the. F8 aircraft which we described in chapter 4. 

As we demonstrated, in MIMO systems, in addition to the integrator windup problem, 

the alteration of the direction of the controls by the saturations can cause problems (see 

academic example #1 in chapter 4). At present there does not exist a design technique which 

addresses this directionality problem; hence, comparisons with our design method cannot be 

performed. 
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6.2 Comparison of Our Design Methodology with 

Conventional Antiwindup Designs 

In order to compare the conventional antiwindup control design methods with the 

methodology described in chapters 4 and 5 (the EG and RG operators) two examples will be 

used. The first example (referred to as academic example #2) was introduced in [30] and it is 

defined as follows: 

Plant dynamics: 

4 5  
P(s) = 4(0*1+s) R-' and R=[ 4] 

S 

Compensator dynamics: 

(6.2) 
' R  K(s) = 4(0.1+s) 

Form the compensator structure it is evident that the compensator is a partial inverse of 

the plant. Since the compensator has "slow dynamics", windups are to be expected whenever 

the controls are saturated. Figure 6.1 shows the closed loop system with the plant, the 

compensator and the saturation element. The saturation has limits of +1 in each control up 

Figure 6.1 : Closed loop system for the academic example a. 
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Using the academic example #2 the following five different simulations were performed 

for the constant disturbance vector d(t) = [.61 .79IT. 

(1) The closed loop system was simulated without the saturation (i.e. u(t) = u,(t)). This 

simulation is referred as the simulation for the linear system. As before, we view the 

response of the linear system as the desired one and the objective is to mimic, to the 

extend posssible, the linear response when the multiple saturations are introduced. 

The closed loop system was simulated with the saturation as shown in figure 6.1. This 

simulation is referred as the simulation for the system with saturation. 

The closed loop system was simulated with the saturation and a conventional antiwindup 

strategy (CAW). In this case, the CAW modifies the compensator's slow dynamics 

when saturation occurs so that the compensator states will never have values larger than 

the saturation limits. In refernce to figure 6.1, the inputs to the slow compensator 

dynamics are modified in the following way 

(2) 

(3) 

CAW v(t) = Re(t) + lOO(u(t) - u,(t)) (6.3) 

The problem with this CAW strategy is that the different control channels do not 

communicate so that if one control ui saturates, then the corresponding vi is modified and 

the vj's (i#j) do not change. Consequently, the direction of the controls is modified and 

in MIMO system this can cause performance problems (as we have observed several 

times before). This simulation is referred to as the system with saturation and CAW. 

The closed loop system was simulated with the saturation and modified conventional 

antiwindup (MAW) strategies. The MAW used modifies the compensator's slow 

dynamics when saturation occurs so that the compensator states will never have values 

larger than the saturation limits. The difference here is that when a control channel ui 

saturates, all the other control channels are also modified. The inputs to the slow 

compensator dynamics in figure 6.1 are changed in the following way 

(4) 
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MAW v(t) = Re(t) + au(t) 

where 
1 0  for IlUllmS 1-E 

a=\lo for I1ullm> 1-E 
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(6.4) 

(6.5) 

This simulation is referred as the simulation of the system with saturation and MAW. 

The last simulation was performed with the EG operator as specified in chapter 4. This 

simulation is referred as the simulation of the system with saturation and the EG. 

(5 )  

Simulations (1) through (4) can be also found in [30]; they are duplicated so that they can 

be compared to simulation (5). 

Figures 6.2 and 6.3 show the output and control responses of the linear system. The 

compensator partially inverts the plant and the open loop system becomes an integrator. The 

responses verify that. Note that the controls exceed the saturation limits (kl). 

Figures 6.4 and 6.5 show the output and control responses of the system with saturation. 

Because of the peculiar directional properties of the plant, when the controls saturate the output 

response deteriorates dramatically. 

Figures 6.6 and 6.7 show output and control responses of the system with saturation and 

CAW. The controls stay within the bounds of the saturation but because the CAW feedback 

loop operates in a "SISO fashion" the response in figure 6.6 is still terrible. The windup 

problem seems to be corrected but the directions of the control seem to be wrong. As was 

remarked above, each control when it saturates, activates a feedback loop without 

communicating with the other control channel. Again, it is obvious that directions of the 

controls are important in MIMO systems. 

Figures 6.8 and 6.9 illustrate the outputs and the control responses of the system with 

saturation and MAW. The responses mimic the linear ones (they are slower as expected); 
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Compare figures 6.2 and 6.8. The directional problem is corrected because when saturation in 

one of the channels occurs the feedback loop is activated for all the channels. The directionality 

of the controls is preserved and thus the integrator windups and the control directional 

problems are corrected. 

Figures 6.10 and 6.11 show the output and control responses of the system with 

saturation and the EG operator. The responses here are identical to the ones when the MAW 

strategy was used. The EG operator preserves the inversion of the plant by the compensator 

and the control directions are not altered. Figure 6.12 show the h(t) for the EG operator that 

was used in this simulation. 

This set of simulations show the potential pitfalls of adapting "good" SISO strategies to 

MIMO systems. By being clever one may find "good" MIMO strategies (the MAW) which 

have less computational complexity as compared with our EG operator approach. On the other 

hand, they are not systematic and each design must be individually developed, adapted, and 

tuned. 
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Figure 6.2: Output response for the linear system. 
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Figure 6.3: Controls in the linear system. 
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Figure 6.4: Output response for the system with saturation. 
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Figure 6.5: Controls in the system with saturation. 
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Figure 6.6: Output response for the system with saturation and CAW. 
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Figure 6.7: Controls in the system with saturation and CAW. 
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Figure 6.8: Output response for the system with saturation and MAW. Blowup: Outputs for 0-2 sec. 
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Figure 6.9: Controls for the system with saturation and MAW. Blowup: Controls for 0-2sec. 
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Figure 6.10: Output response for the system with saturation and the EG. 
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Figure 6.1 1: Controls in the system with saturation and the EG. 

Blowup: Controls for 0-2 sec. 
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h(t) for the control system of the academic example with h(t) 
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Figure 6.12: h(t) for the system with saturation and the EG. 

Another set of simulations was performed for the F8 aircraft closed loop system, which 

was described in chapter 4. The closed loop system is shown in figure 6.13. Simulations with 

the CAW, MAW and the EG operator were performed for this control system. The simulations 

for the linear system and the system with saturation are shown in chapter 4 (see figures 4.3 1, 

4.32, 4.33, and 4.34). 

~ ~~ ~ __ ~~~~~ 

Figure 6.13: The closed loop system for the F8 aircraft. 
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(1) The closed loop system was simulated with the saturation and modified 

antiwindup (MAW) strategies. The difference here is that whenever one control 

channel 4 saturates all the other control channels are modified. The inputs to the 

integrators are changed in the following way (see figure 6.13). 

MAW u a = K e + a u  

l o  for Ilulloo~ 1-E 

for Ilulloo> 1-E 
where (6.7) 

The MAW does not guarantee any more that the controls will not saturate, because 

the compensator dynamics are ignored in the antiwindup strategy. This is why the 

computations are very simple. This simulation is referred to as the simulation of the 

system with saturation and MAW. 

In this simulation, in addition to MAW the control direction will also be preserved 

by limiting the control magnitude. We wanted to see if the control direction 

preservation provides any advantages, at least, in this example. The following 

operation on the controls will be introduced 

(2) 

U' = [VS]U~ 

u(t) = pu' 

where 



~~ ~ 
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(6.10) 

The controls will now always remain within the saturation limits, and thus the 

direction of the control vector will be preserved. Note that the gain p does not 

commute with the compensator K (i.e. GPK z GKP) and, consequently, if the 

linear compensator inverts or partially inverts the linear plant, then the inversion 

operation will be disturbed by the gain P. This simulation is referred as the 

simulation with saturation, MAW and control direction preservation (CDP). 

The last simulation was performed with the EG operator, as specified in chapter 4. 

This simulation is referred as the simulation of the system with saturation and the EG. 

(3) 

Figures 6.14 and 6.15 show the output and control responses of the system with 

saturation and MAW to the constant reference r = [ 10 

are better than the ones obtained when no antiwindup strategy was used (shown in figure 

4.33). The direction of the output response is not exactly similar to the linear one (shown in 

figure 4.3 1). The small problem in the direction of the outputs is caused because the controls 

saturate for a small period of time. 

10IT. One can see that the responses 

Figures 6.16 and 6.17 show the output and control responses of the system with 

saturation, MAW and CDP. At least for this example, the control direction preservation does 

not seem to offer any advantage. Instead it appears that the output response deteriorates 

(compare figures 6.16 and 6.14). 

Figures 6.18 and 6.19 show the output and control responses of the system with 

saturation and the EG. The benefit of the EG operator is obvious and the nonlinear response 

mimics the linear one. Note that the controls never saturate. Comparison of figures 6.18,6.16 

and 6.14 demonstrate the superiority of the EG operator design; note, however, that it requires 

much more (off-line and on-line) computation than the other designs. 
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Output of the F8 control system with MAWC 
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Figure 6.14: Output response for the F8 system with saturation and MAW, (r = [lo lo]'). 

Controls in the F8 control system with MAWC 
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Figure 6.15: Controls in the F8 system with saturation and MAW, (r = [ 10 lo]'). 
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Figure 6.16: Output response for the F8 system with saturation, MAW and CDP, (r = [lo lOIT>. 

Controls in the P8 system with MAWC and control direction preservation 
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Figure 6.17: Controls in the F8 system with saturation, MAW and CDP, (r = [lo lo]'). 
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Outputinthe F8 closed loop systemwithr=[ 10 10IT 
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Figure 6.18: Output response for the F8 system with saturation and the EG, (r = [lo lOlT). 

Controls in the F8 closed loop system with r=[ 1 0 101 
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Figure 6.19: Outputs in the F8 system with saturation and the EG, (r = [lo 10IT). 
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In the simulations above, it was found that some simple "fmes" led to reasonable output 

performance. However, we can never be sure that the same ad-hoc "fmes" will continue to 

work well for other reference inputs and/or disturbances. 

Three more simulations were performed for the same system but for a different reference 

20IT). The reason for doing these additional simulations is to find out how the input (r = [20 

references can affect the output and control responses since the closed loop system is 

nonlinear. 

Figures 6.20 and 6.21 show the output and control responses of the system with 

saturation and MAW. One can see that integrator windups are now dominantly present in 

addition to the alteration of the control direction. The reason is that the compensator states are 

not included in the antiwindup strategy and nothing explicitly prevents them from windup. It is 

not clear how one would design MAW for the compensator, since the compensator is a highly 

coupled MIMO system. 

Figures 6.22 and 6.23 show the output and control response of the system with 

saturation, MAW and CDP. Now the output responses seem to be improved (minor direction 

problems still exist) and the integrator windups are not very large. 

Figures 6.24 and 6.25 show the output and control response of the system with 

saturation and the EG. The responses mimic the ones of the linear system, as our systematic 

methodology guarantees. 
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Output in the F 8 control system with MAWC 
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Figure 6.20: Output response for the F8 system with saturation and MAW, (r = [20 2OlT). 

Controls u(t) in the F8 control system with MAWC 
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Figure 6.21: Controls in the F8 system with saturation and MAW, (r = [20 2OlT). 
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Output of the F8 control system with MAWC and Control direction presemtion 
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Figure 6.22: Output response for the F8 system with saturation, MAW and CDP, (r = [20 20IT). 
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Figure 6.23: Controls in the F8 system with saturation, MAW and CDP, (r = [20 20IT). 
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Output y(t) in the F8 control system with A(t) 
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Figure 6.24: Output response of the F8 system with saturation and the EG, (r = [20 2OlT). 

.oo 

Figure 6.25: Controls in the F8 system with saturation and the EG, (c = [20 20IT). 
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h (t) for the F8 control system 
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Figure 6.26: h(t) for the F8 system with saturation and the EG, (r = [20 

Blowup: h(t) for 0-lsec. 

20IT). 

6.3 Concluding Remarks 

In this chapter we compared via simulations our new design methodology with extensions 

of conventional SISO antiwindup circuits to MIMO systems. The comparisons were performed 

for two examples. In both cases it was shown that our design methodology performs 

consistently better. 

The extension of the SISO antiwindup circuits to MIMO systems is not simple and, in 

general, it is not known if such extensions are possible. For simple control systems, the 

conventional antiwindup circuits may work and eliminate or partially eliminate integrator 

windups. In contrast the new design methodology introduced in chapters 4 and 5 is general and 

eliminates windups completely. The price that one has to pay for using the new design 

methodology is that the off-line computation for high dimentional controllers is extensive. 
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For MIMO control systems the conventional antiwindup strategies do not solve the control 

directionality problem i.e. the alteration of the control vector direction. Additional logic may 

have to be introduced to fix up that problem. 

In summary, for a specific control system conventional antiwindup strategies should be 

considered as they may solve the problem of integrator windups. If this is the case, since the 

conventional antiwindup strategies are simple to implement, they should be used. If for the 

specific control system the conventional antiwindup strategies do not solve the problem, then 

the new design methodology, proposed in this thesis, should be used. 
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CHAPTER 7 

RATE SATURATION, RATE/MAGNITUDE SATURATION 

AND STATE LIMITERS 

7.1 Introduction 

Magnitude saturation of the control signals is a commonplace nonlinear phenomenon that 

the control system designer must address. However, in addition to magnitude saturation, the 

control system designer must also deal with rate saturation (often combined with magnitude 

saturation), and with the problem of enforcing specific limits upon the magnitude of certain 

critical state variables (often for safety reasons). For example, in aircraft problems we may 

wish to limit the angle of attack so as to prevent stall; in turbofan engines one may wish to limit 

certain turbine temperatures to avoid damage. 

In this chapter it will be shown how the techniques developed in chapters 3 to 5 can be 

extended for the design of MIMO control systems with rate saturation, rate and magnitude 

saturation and state limiters. 

The idea here is to design a linear compensator for the linearized plant and then by 

operating on the error and/or the references to modify the controls so that the closed loop 

system will have "nice" properties. 

Three very common cases will be considered in this chapter. The first case is the case 

where the control's rute is bounded, the second case is the case where the controls magnitude 

and rute ure bounded, and the third case is the case where certain stutes of the plant should 

remain bounded. 

In this chapter, a way of modifying the references and/or the error signals with the EG 

and the RG operator will be introduced so that the controls or certain states will not violate their 
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predefined bounds. The methods used are similar to the ones described in chapters 4 and 5 

with minor modifications for each of three cases. Even though it may seem repetitious, for 

completeness, the construction of the EG and RG operators will be stated again. But for details 

that are omitted here one should refer to Chapters 3,4  and 5. 

7.2 Rate Saturation 

In this section systems with control rate saturation will be investigated. Consider a closed 

loop system which consists of a plant, a compensator and a rate saturation at the plant input as 

shown in figure 7.1. 

Figure 7.1 : Closed loop system with rate saturation 

The plant model is given by the following state space representation 

The compensator generates u(t) from e(t) and is given by the following state space 

representation 
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where r(t) is the reference and y(t) is the output vector. 

The rate saturation is modelled with a simple closed loop model given by 

(7.3) 

(7.4) 

(7.5) 

where u(t) are the commanded control signals, u,(t) are the actual (output of the rate saturation) 

controls driving the plant with u(t) = [ ul(t) , . . . , %(t)ITy uJt) = [ usl(t) . . . , um(t)lT and 

and in compact form 

u,(t) = rsat(u(t)) (7.8) 

In eq. (7.7) the value of k can be chosen to be "large enough" so that when the saturation 

is used in the linear region the u(t) will be approximately equal to u,(t). The model of the rate 
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saturation is shown in figure 7.2. 

sat I I 
I 
I I i  

Figure 7.2: Model of the rate saturation 

Note that the rate saturation cannot be modelled simply as &(t) = sat(;(t)) because at 

steady state the u,(t) and u(t) signals can differ. For example, consider the case where u(t) is 

ramp with slope 1 from t = 0 to t = 1 and the rate saturation is 1/2. In that case the steady state 

value of u(t) is 1 and the steady state value of u,(t) is 1/2. Figure 7.3 shows the u(t) signal with 

the signal u,'(t) when d,'(t) = sat(d(t)) and the signal u,"(t) when ;,"(t) is computed from 

eqs. (7.6)-(7.8). 
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1 

Figure 7.3: A sample u(t) signal and the outputs u'(t) and u"(t) from two different rate 

saturation models. 

Thinking in a similar manner as for the magnitude saturation the idea is to modify the 

references error e(t) to eL(t) and/or r(t) to rJt) by the EG and/or the RG operators only when 

conditions exist so that the control rate u(t) will saturate. The modification has to be carried out 

in such a way that any current or future references will never cause the control rates to saturate. 

In sections 7.2.1 and 7.2.3 two different control structures for plants with rate saturation 

are given. The two different control structures are with the EG or the RG operators. Table 7.1 

shows the application of the two control structures depending the stability of the plant and the 

compensator. 
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BpPllafions 0ft-m with the EG andor RG ow- for . .  

H 
PI 

P 
d 
8 
3 
3 - 

~~ ~ 

Neutrally stable 
compensator 

~~ ~ 

Control structure with EG 

Control structure with RG 

Control structure with RG and EG 

Control structure with RG 

Control structure with RG and EG 

Unstable 
compensator 

Control structure with RG 

~~ ~ 

Control structure with RG 

The control structure that will be introduced in this section is similar to the control 

structure with the operator EG (see section 4.3). This control structure is useful for stable 

plants with neutrally stable compensators. A time varying gain h(t) (EG operator) will be 

introduced at the error signal e(t) so that the controls will never saturate. The control rate ;(t) 

with the EG operator is given by 

(7.9) 

(7.10) 

(7.1 1) 
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The eqs. (7.9)-(7.11) are to be interpreted as a dynamic system with states x,(t), input 

h(t)e(t) and output i(t). Note that there is a feedforward term C,B, from the inputs h(t)e(t) to 

the outputs i(t). The objective here is to construct h(t) in such a way so that for any error e(t) 

the control rate u(t) never saturates. This is similar to designing a time-varying gain so that the 

output of a linear system remains bounded (section 3.3). By following the discussion in 

section 3.3 one can construct h(t) to achieve the objective. At first, a function g'(x) and a set 

RA,c have to be defined 

g'(x0): g'(x0) = l l i( t) l l~ 

;(t) = A,x(t); 

where 

x(0) = xo 

i(t) = C,A,x(t) 

(7.12) 

(7.13) 

(7.14) 

RA,C = { x: g'(x) I 1 } (7.15) 

For the function g'(x) to be finite the compensator (eqs. (7.3)-(7.5)) has to be neutrally 

stable. That is why the Error Governor is to be used only for neutrally stable compensators as 

shown in table 7.1. As in section 3.3 the construction of h(t) is given by 



Chapter 7 Page 188 

Construction of Xt)  for the system with a feedforward term: 

For every time t choose h(t) as follows 

a)The largest h(t) such that IIC&x,(t) + C,B,h(t)e(t)ll, 1 1 

b) if x,(t)E BdR*,c then choose the largest k(t) such that 

0 s h(t) I 1 

(7.16) 

(7.17) 

or for the points where g(xJ is differentiable choose the largest h(t) such that 

0 s h(t) I 1 

Dg'(x,(t)) [A,x,(t)+B,h(t)e(t)l 1 0 VtM 

(7.19) 

(7.20) 

where Dg'(x,(t)) is the Jacobian matrix of g'(x,(t)) as it is given in definition 3.2. 

c) if xc(t)e RA,c then choose h(t), 0 S h(t) S 1 such that the expression in (7.18) is 

minimum. 

The control structure with the EG operator for plants with rate saturation presented here is 

similar and therefore has similar properties as the control smcture with the EG operator for 

plants with magnitude saturations presented in chapter 4. In most applications the control rate 

saturation is present in addition to the control magnitude saturation and section 7.3.1 introduces 

a control structure with the EG operator for plants with both control magnitude and rate 

saturations. 

7.2.2 Academic ExamDle 

Consider the following system which is the compensator for the academic example #1 
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defined in section 4.2.3. 

-2.6093 1.4180 -29.8308 2.989 

-7.1476 1.5213 (7.21) -68.7543 10.8387 ] x(t) + [ x(t) = 

(7.22) 

Assume that in the academic example #1 it is desired to have llu(t)llw I 2.5 for every t 

and e(t). To use the control structure with the EG operator one has to modify e(t) to h(t)e(t). 

The computation of h(t) requires the calculation of the RA,, set. 

2 g'(x0): IR +R, g'(x0) = Ilu(xo,t)ll, 
2 RA,, = { XE IR : g'(X) 5 2.5 } 

(7.23) 

(7.24) 

The computation of the EG operator for this case is the same as the one given in section 

4.2. In summary, one has to compute the RA,,, from the R,,, set one can construct the 

function g'(x) since g'(x) is a cone and the RA,c set is the intersection of the cone with the 

g'(x) = 2.5 hyperplane. By knowing g(x) and the RA,c set one can construct h(t) as it is 

shown in sections 3.3 and 4.2. 
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Figure 7.4: The RA,C set for the academic example #l. 

Figure 7.4 shows the set RA,,. Note the symmetry with respect to the origin, the 

convexity and the fact that the set is bounded because all the modes of the system are 

observable. This set will be used in the sequel in (section 7.3) to design a compensator that will 

insure that the magnitude and the rate of the controls remain bounded. 

& i n  

In analogy to chapter 3 and 5, a time varying rate p(t) will be introduced at the reference 

signal r(t) so that the controls of the plant will never exceed their rate limits as shown in figure 

7.5. The RG operator is a time-varying rate limiter on the references where p(t) is a time- 

varying gain, 0 I p(t) 5 -. 
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Figure 7.5: Control structure with the RG operator for plants with rate saturation. 

The plant and the compensator dynamics in figure 7.5 are described in eqs. (7.1)-(7.5). 

Assuming that the states of the integrators in the time varying rate are z(t) then the time varying 

rate at the references can be described by the following 

(7.25) 

(7.26) 

(7.27) 

As in chapter 5, the time varying gain p(t) will be chosen so that if r(t) is small enough 

never to cause saturation of the rate of the controls then r(t) = rp(t) and if r(t) is large enough 

to cause saturation of the rate of the controls then p(t) will limit the references so that the rate of 

the controls will remain bounded. Consider the linear closed loop system (i.e the system 

without rate saturation) and assume the following representation 
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(7.28) 

(7.29) 

Acl = 

Then one can combine the dynamics of the rate limiter (7.22)-(7.24) with the dynamics of 

the closed loop system (7.25)-(7.26) to obtain an augmented system 

(7.30) 

(7.31) 

where 

The objective here is to construct p(t), 0 I p(t) I -, in such a way so that for any error 
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e&) the control rate J(t) never saturates. This is similar to designing a time-varying rate so that 

the output of a linear system remains bounded (section 3.4). At first, a function g'(x) and a set 

R A , c  have to be defined. The symbols g'(x) and RA,C should be thought as generic symbols 

and when they are used they are always defined to avoid confusion. 

where (7.33) 

(7.34) 

R A , c  = { X: g'(x) S 1 } (7.35) 

For the function g'(x) to be finite the linear system in eq. (7.33) has to be neutrally 

stable. This is always true for any compensator and any plant provided that the linear closed 

loop system (the system in figure 7.1 without the saturation) is stable. Therefore, the Reference 

Governor can be used in all cases as shown in table 7.1. As in section 3.3 the construction of 

p(t) is given by 
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Construction of Mt): 

For every time t choose p(t) as follows 

a) if Xa(t)E IntRA,c then p(t) = - which implies that r(t) = rp(t) (7.36) 

(7.37) b) if Xa(t)E BdR,,c then choose the largest p(t) such that 

E (7.38) 

or for the points where g'(x) is differentiable choose the largest p(t) such that 

0 s p(t) s 00 (7.39) 

Dg'(xa(t))[Aaxa(t)+BaCL(t)e,(t)] 0 v t > 0 (7.40) 

where Dg'(x,(t)) is the Jacobian matrix of g'(xa(t)) as in definition 3.2. 

c) if xa(t)e R,,, then choose p(t), 0 5 p(t) I - such that the expression (7.38) is 

minimum. 

Because the control structure given above is similar to the control structure introduced in 

chapter 5 both structure have the same properties. Mare specifically, the control rate remains 

bounded and as a consequence, integrator windups and the control direction do not cause any 

problems in the performance of the system. As it was described in chapter 5 the states of the 

plant have to be measured for the realization of the RG operator and the off-line computational 

requirements can be severe if the state dimension of the plant and the compensator is large. 

With the rate saturation problem transformed to fit the magnitude saturation problem it is 

obvious how the control structure with the EG and RG operators can be used to deal with rate 

saturations as it was discussed in section 5.3.1 (Description of the Control Structure with The 

Operators EG and RG). 
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7.3 Rate/Magnitude Saturation 

Assume that a given closed loop system consists of a plant, a compensator, a magnitude 

saturation nonlinearity (sat), and a rate saturation nonlinearity (rsat) as shown in Figure 7.6. 

The saturation elements (sat, rsat) have been defmed in eqs. (2.1) and (7.6). 

Figure 7.6: Closed loop system with rate and magnitude saturation 

The following models for the plant and the compensator can be assumed 

Plant model: 

Compensator model: 

(7.41) 

(7.42) 

];e(t) = Acxc(t) + Bce(t) (7.43) 
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(7 .w 
(7.45) 

Saturation model: 

u,(t) = rsat(sat(u(t))) (7.46) 

7.3.1 Control Structure with EG for Plants with Rate and Mamitude Saturation 

The problem here is to keep the control magnitude and rate bounded. The idea is to 

modify the error e(t) to eh(t) only when the references are large enough and the controls u(t) 

will saturate either in magnitude or rate. The modification has to be accomplished in such a way 

that any current or future references will never cause the system to saturate. The operator EG 

has to be introduced as part of the compensator. The modified compensator is defined as 

follows. 

;,(t) = A,x,(t) + B,h(t)e(t) 

= C,x,(t) 

u(t> = C,A,x,(t) + C,B,X(t)e(t) 

(7.47) 

(7.48) 

(7.49) 

In chapter 4 it was described how one can introduce the operator EG such that the 

magnitude of the controls remain bounded. That was done by defining a function g(x) and a set 

BA,c and by constructing a time varying gain, call it h,(t), such that the states of the 

compensator remained in the BA,c set for any reference. 

In section 7.2.1 it was described how one can introduce the operator EG such that the 

rate of the controls remain bounded when the open loop plant is stable. That was done by 
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defining a function g'(x) and a set R A , c  and by constructing a time varying rate, call it h(t), 

such that the states of the compensator remained in the R A , g  set for any reference. 

Since the problem here is to keep both the magnitude and rate bounded one can choose 

h(t) in eqs. (7.47)-(7.49) as the minimum of h,(t) and &(t) and that will prevent the controls 

of saturating both in magnitude and rate. To do this, one has to compute, at every time to, both 

hl(t) and h(t) (in addition to the fact that both the B A , c  and R A , c  sets have to be 

precomputed and stored during the operation of the system). Another way of computing the 

h(t) is to define another set SA,C 

SA,C = BA,C R A , C  (7.50) 

Then one can use the SA,C set in the implementation of h(t) in section 4.2.2. To be more 

specific in the construction of h(t) in section 4.2.2 the SA,C set can be used instead of the 

B A , c  set. The function g(x) can be computed by constructing the cone g(x) with the set SA,C 

being the set of points where g(x) 2 1. Since the S A , c  is the intersection of both B A , c  and 

R A , c  the compensator and plant states will remain in both BA,C and R A , c  for all t, and the 

controls will never saturate in either magnitude and rate. 

7.3.2 Academic Example 

Consider the academic example given in section 3.3 and section 7.2. The B A , c  set has 

been calculated in section 3.3 and the set R A , c  was calculated in section 7.2. Figure 7.7 shows 

both B A , c  and R A , c  sets and their intersection SA,C. The SA,C set will be used to modify the 

compensator when both control magnitude and rate saturations are present. 
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Figure 7.7: The SA,c set for the academic example. 

7.3.3 Simulation of the Academic Example 

Four distinct type of simulations were performed. These simulations correspond to the 

linear system, to the system with magnitude saturation, to the system with rate and 

magnitude saturation and to the system with rate, magnitude saturation and the EG operator. 

All the computations were performed in the Macintosh 5 12K and the calculation of the 

EG operator required approximately 15-16 hours. The first simulation was performed with 

reference r = [.22 

saturation is assumed to be f2.5 

.22IT. The magnitude saturation is assumed to be f l  and the rate 

Figure 7.8 show the state trajectory of the compensator states for the linear system. Note 

that the state trajectory does not remain in the SA,C = RA,c n BA,c; therefore, the potential 

exists for saturating in both rate and magnitude. 
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state trajectory for the academic errample with r=[ .ZZ .ZZ 1 
2.00 , 1 

1.20 

0.40 
x2 

-0.40 

- 1.20 

-2.00 

'A,C 

-2.00 -1.20 -0.40 0.40 1.20 2.00 
X i  

Figure 7.8: State trajectory of the linear closed loop system with reference r = [ .22 .22IT 

Figures 7.9 and 7.10 show the output and control responses for the linear system. The 

controls violate the _+1 limits and the rate of the controls exceed the f2.5 limits. The linear 

response is assumed to be the desired one. 

Figures 7.11 and 7.12 show the output and control responses of the system with 

magnitude saturation. One can see that the output response has significantly deteriorated even 

for a small amount of saturation (~1 .1) .  

Figures 7.13 and 7.14 show the output and control response of the system with both 

magnitude and rate saturation. The response of the system has now completely deteriorated in 

both the controls and the outputs. 
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Academic example withr=[ 2 2  . Z I T  
0.30 

0.20 

0 0.10 x 
ti 
B g 0.00 

-0. t o  

-0.20 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.9: Output of the linear system, (r = [ .22 .22]T) 

Academic example with r=[ 2 2  2 2  1' 
1 .so 

0.90 

9 0.30 
23 

-0.25 

0-0° rn 8 
-0.30 u 

-0.50 
0 .oo 0.05 0.1 0 

-0.90 

- 1 .so 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.10: Control of the linear system with reference (r = [ .22 .22]T> 
Insert: Blowup with 0 < t < .1  sec 



Chapter 7 

~~ ~ 

Page 201 

0.40 

0.30 

s; 0.20 
ti 

0 0.10 

0 

0.00 

-0.10 
0.00 2.00 4.00 6.00 8.00 10. 

Time (sec.) 
00 

Figure 7.1 1 : Output of the system with control magnitude saturation, 
without control rate saturation and with reference (r = [ .22 .22]T) 

Academic example with r=[ .22 .22 3 
1 .oo 

0.50 

0 0.00 
3 
3 
-0.50 8 
- 1 .oo 

- 1 .SO 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.12: Control of the system with control magnitude saturation, 
without control rate saturation and with reference (r = [ .22 .22IT) 
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Academic example with r=[ 22 22 ] 

0.00 2.00 4.00 6.00 8.00 10.00 
Time (sec.) 

Figure 7.13: Output of the system with control magnitude and rate saturation, (r = [ .22 .22]T) 

Academic example with r=[ 22 22 IT 
20.00 

12.00 

g 4.00 

- 12.00 

-20.00 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.14: Control in the system with control magnitude and rate saturation, (r = [ .22 .22IT) 
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Figure 7.15 show the state trajectory of the system with magnitude and rate saturation 

and the EG operator. Note that the state trajectory of the compensator does remain in SA,, for 

all t and so neither magnitude nor rate saturation will occur. 

Figures 7.16 and 7.17 show the output and control response of the system with the EG 

operator. Note that the output direction is similar to the linear response (figure 7.9) and that the 

controls remain within the limits of the magnitude and rate saturation. 

Figure 7.18 show the h(t) required for this simulation. One can see that the h(t) starts at a 

value less than 1 since the controls at the beginning would exceed the rate saturation limit then 

gradually h(t) increases to 1, then the states of the compensator reach the boundary of the 

R,,, set and h(t) is decreased. Note that h(t) is also decreased drastically again at =.6 sec, 

because the states of the compensator reach the boundary of the B,,, set. 

State Trajectory of the academic example with r=[ 22 22 3 
2.00 

1.20 

0.40 
x2 

-0.40 

- 1.20 

-2.00 
-2.00 -1.20 -0.40 0.40 1.20 2.00 

Figure 7.15: State trajectory of the system with control magnitude 
/rate saturation and the EG, (r = [ .22 .22IT) 
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Academic example with r=[ 22 22 IT 
0.30 

0.20 

0.10 z 
g 0.00 
5 

0 

-0.10 

-0.20 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.16: Output of the system with magnitudehate saturation and the EG, (c = [22 .22IT). 
Academic example with r=[ 22 22 ] 

1.50 

0.90 

0.30 

2 -0.30 u 
z 
-0.90 

- 1 .SO 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

-0.25 

0*0° 1-I 
-0.50 u 

0 .oo 0.05 0.1 0 

Figure 7.17: Controls in the system with magnitudehate saturation and the EG, (r = [ .22 .22IT>. 
Insert: Blowup of 0 < t < .1 sec 
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1.10 

0.88 

0.66 

A (t> 
0.44 

0.22 

0.00 

A(t) for the academic example withr=[ .22 .22 lT 

120 l------ 

0.40 

0 .oo 
0 .oo 
JJ 
0.30 0.60 0.90 

0.00 2.00 4.00 6.00 8.00 10.00 
Time (sec.) 

Figure 7.18: h(t) of the system with magnitudehate saturation and the EG, (r = [ .22 .22IT). 
Insert: Blowup 05 t I .9 sec. 

Another set of simulations was performed with the reference being r = [ 0 2.5IT. The 

observations that one can make from this simulation results (figures 7.19-7.28) are similar to 

the ones made from the previous simulation. The magnitude saturation affects negatively the 

desired linear response of the system and when the magnitude saturation is combined with the 

rate saturation then the performance of the system deteriorates dramatically. The error governor 

(EG) seems to fix all problems. 
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Academic example vith r =[ 0 2.5 ] 

Chapter 7 

4.00 

3.00 

2.00 

e 
'5; 1.00 6 
0 
0.00 

- 1 .oo 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.19: Output of the linear system, (r = [ 0 2.5IT). 
Academic example with r =[ 0 2.5 3 ' 
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2.00 

5 1.00 

- 1 .oo 

-2.00 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.20: Controls in the linear system, (r = [ 0 2.5IT). 
Insert: Blowup with 0 < t < .1 sec 
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4.00 

3.00 

2.00 
5 
B g 1.00 

0.00 

- 1 .oo 

Academic example with r=[ 0 

yz 

2.5IT 

0.00 2.00 4.00 6.00 8.00 10.00 
Time (sec.) 

Figure 7.21: Output of the system with only magnitude saturation, (r = [ 0 2.5IT). 

Academicexamplewithr=[ 0 2.5IT 
3.00 

2.00 

s 1.00 

- 1 .oo 

-2.00 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.22: Controls in the system with only magnitude saturation, (r = [ 0 2.5IT). 
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Academic example with r=[ 0 2.5 1' 
7.00 

5.00 

- 1 .oo 

-3.00 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.23: Output of the system with magnitude/rate saturation, (r = [ 0 2.5 19. 

Academic example vith r =[ 0 2.5 3 
30.00 

18.00 

6.00 

- 18.00 

-30.00 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.24: Controls in the system with magnitudehate saturation, (r = [ 0 2.5IT). 
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- 

- 

. 

State trajectory for the academic example with r =[ 0 2.5 ] 
2.00 I I 

-2.00 I I 
-2.00 -1.20 -0.40 0.40 1.20 2.00 

X1 

Figure 7.25: State trajectory of the compensator state in the system 
with magnitudehate saturation and the EG (r = [ 0 2.5IT). 
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3.00 

0 2.00 x 
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B g 1.00 

0.00 

- 1 .oo 

Academic example vith r p[ 0 2.5 3 

0.00 2.00 4.00 6.00 8.00 10.00 
Time (sec.) 

Figure 7.26: Output of the system with magnitudehate saturation and the EG, (r = [ 0 2.5 IT). 
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Academic example with r= [ 0 2.5 ] 
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3.0 

2.0 

-1.0 

-2.0 
0.00 2.00 4.00 6.00 8.00 10.00 

Time (sec.) 

Figure 7.27: Controls in the system with magnitudehate saturation and the EG, (r = [ 0 2.5 19. 

1.10 

0.88 
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0.00 

h(t) for the academic example withr=[ 0 2.4IT 
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Figure 7.28: h(t) of the system with magnitude/rate saturation and the EG, (r = [ 0 2.5 IT). 
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7.3.4 Control Struc ture with RG for Plants with Rate and Position Saturation 

The problem here is to keep the control magnitude and rate bounded. The idea is to 

modify the references r(t) to rJt) only when the references are large enough and the controls 

u(t) will saturate either in magnitude or rate. The modification has to be in such a way that any 

current or future references will never cause the system to saturate. The operator RG has to be 

introduced and it is defined in the following 

(7.5 1) 

(7.52) 

(7.53) 

In chapter 5 it was described how one can introduce the operator RG such that the 

magnitude of the controls remain bounded. That was done by defining a function g(x) and a set 

BA,, and by constructing a time varying rate, call it pl(t), such that the states of the 

compensator remained in the BA,C set for any reference. 

In section 7.2.3 it was described how one can introduce the operator RG such that the 

rate of the controls remain bounded when the open loop plant is unstable. That was done by 

defining a function g'(x) and a set R,,, and by constructing a time varying rate, call it pz(t), 

such that the states of the compensator remained in the R A , c  set for any reference. 

Since the problem here is to keep both the magnitude and rate bounded, one can choose 

p(t) in eq. (7.52) as the minimum of pl(t) and k ( t )  and that will prevent the controls of 

saturating both in magnitude and rate. Doing that one has to compute at every time to both pl(t) 

and h(t), in addition to the fact that both BA,, and RA,, has to be stored during the operation 

of the system. 
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Another way of computing p(t) is to defrne another set SA,, 

= BA,C RA,C 
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(7.54) 

Then one can use the SA,, set in the construction of p(t) in section 5.2.2. Because the 

RA,, is the intersection of both RA,, and RA,, the compensator and plant states will remain in 

both RA,, and RA,,, for all t. 

7.4 Limits on State Variables 

In many cases it is desired that a subset of states of the plant remain bounded, ie. limited 

in magnitude, perhaps for safety reasons. In this section the EG and RG operators will be used 

to insure that under any reference and disturbance or class of disturbances certain states of the 

plant remain bounded. 

compensator plant 

Figure 7.29: The linear closed loop system 

Figure 7.29 shows the closed loop system with the plant and a linear compensator. The 

plant model and the compensator model are given by: 

Plant: i(t) = Ax(t) + Bu(t) (7.55) 
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(7.56) 

(7.57) 

(7.58) 

(7.59) 

where r(t) is the reference and y(t) is the output vector. 

Also assume that the state space representation of the loop transfer function G(s)K(s) is 

given by 

(7.60) 

(7.61) 

where 

Let xb(t) denote the vector of states that should remain bounded, and assume that the 

limits for the states are +1 (llx,,(t)ll~ I 1). Typically, Xb(t) will be a subset of the entire plant 

state vector x(t). 

(7.62) 
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Neutndlystable 
G(s)K(s) 

Control s t r u m  with EG 

Control structure with RG 

Control structure with EG and RG 

The objective now is by introducing the EG and RG operators to prevent the xb(t) states 

of exceeding their limits. In sections 7.4.1 and 7.4.2 two control structures with the EG and 

RG operators will be given (similar to the ones for the control rate and control magnitude 

saturations). Table 7.2 shows potential applications for these two structures. 

UllStabk 
G(s)K(s) 

Control structure with RG 

7.4.1 Control Structure with EG for Plants with Limits on the State Variables 

A time varying gain h(t) will be introduced at the error signal e(t) so that the states xb(t) 

of the plant will never exceed their limits. Consider the state space representation of the loop 

transfer function and define as an output the state variables that have to remain bounded xb(t). 

&(t) = Alxl(t) + B,h(t)e(t) (7.63) 

xb(t> = CbXl(t) 

where 

(7.64) 
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One should consider the system given in eqs. (7.63)-(7.64) as linear system with h(t)e(t) 

as its input, Xb(t) as its states and xb(t) as its output. Then the goal is to choose the time- 

varying gain h(t) so that the output of the linear system xb(t) remain bounded. By following 

the discussion in section 3.3 one can construct h(t) to achieve our objective. A function g(x) 

and a set B,,, have to be defined 

(7.65) 

(7.66) 

B,,, = { X: g(x) I 1 } (7.68) 

For the function g(x) to be finite the loop transfer function G(s)K(s) has to be neutrally 

stable. That is why the Error Governor is to be used only for neutrally stable loop transfer 

functions as shown in table 7.1. As in section 3.3 the construction of h(t) is given by 
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Construction of Xt): 

For every time t choose h(t) as follows 

a) if xl(t)E IntBA,c then h(t) = 1 

b) if xl(t)E BdBA,c then choose the largest X(t) such that 

0 s h(t) s 1 
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(7.69) 

(7.70) 

(7.71) 

or for the points where g(xl) is differentiable choose the largest h(t) such that 

0 I h(t) s 1 

Dg(x,(t))[A,x,(t)+B,X(t)e(t)I 0 w s  (7.74) 

(7.73) 

c) if xl(t)e RA then choose X(t), 0 I X(t) 5 1 such that the expression in (7.72) is 

minimum. 

With the operator EG in the loop one can guarantee that the states x,(t) will never violate 

their predefined limits. The properties and the implementation of the control system are similar 

to the ones for control structure described in chapter 4 (sections 4.2.1 and 4.2.2). The operator 

EG can be used to ensure that certain outputs of the system (C'x,(t)) are bounded (limits on 

overshoots). This can be done by replacing Cb in eq. 7.64 and replace it with C' and the rest 

of the procedure remains the same. 

It is common that in addition to the limits on the state variables, magnitude and/or rate 

saturations are present. The construction of the EG operator in this case follows from section 

7.3.1. One can design a h,(t) to handle the magnitude saturation, a h( t )  to handle the rate 

saturation, and a %(t) to handle the limits on the states. Then the operator EG h(t) = min 

(hl(t>.h(t),%(t)). 
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7.4.2 Control Structure with RG for Plants with Limits on the State Variables 

A time varying rate p(t) will be introduced at the reference signal r(t) so that the xb(t) 

states will not exceed their limits as shown in figure 7.30. The RG operator is constructed in a 

way similar to the one given in chapters 3 and 5. Figure 7.30 shows the control structure with 

the RG operator. 

Figure 7.30: Control structure with the RG operator for plants with state limiters. 

The plant and the compensator dynamics in figure 7.30 are described in eqs. (7.55)- 

(7.59). Assuming that the states of the integrators in the time varying rate are z(t) then the time 

varying rate at the references can be described by the following 

(7.75) 

(7.76) 
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(7.77) 

Following the discussion in chapter 5, consider the linear closed loop system and assume 

the following state space representation 

(7.78) 

(7.79) 

where xl(t), AI, Bl, c b  are the defined in eqs. (7.60), (7.61), and (7.64) 

Then one can combine the dynamics of the rate limiter (7.75)-(7.77) with the dynamics of 

the closed loop system (7.78)-(7.79) to obtain the following augmented system 

(7.80) 

(7.81) 

where 

To construct p(t) one has to define a function g(x) and a set B,,, as follows 

(7.82) 

(7.83) 
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(7.84) 

BA,C = { X: g(X) S 1 } (7.85) 

For the function g(x) to be finite the augmented system has to be neutrally stable. As discussed 

in section 5.2 this is always true even if the plant is unstable. 

Construction of Mt): 

For every time t choose p(t) as follows 

a) if x,(t)E IntBA,c then p(t) = - which implies that r(t) = rp(t) 

b) if xa(t)E B ~ B A , ~  then choose the largest p(t) such that 

(7.86) 

(7.87) 

0 I p(t) I - 
E+O e (7.88) 

or for the points where g(x) is differentiable choose the largest p(t) such that 

0 I p(t) I - (7.89) 

Dg(x,(t))[A,xa(t)+B,~l(t)e,(t)] 0 v t > 0 (7.90) 

where Dg(x,(t)) is the Jacobian matrix of g(x,(t)) as in definition 3.2. 

C) if X,(t)e RA,c then choose p(t), 0 S p(t) S - such that the expression (7.88) is 

minimum. 

The implementation of this control structure is similar to the one given for the control 

structure with the operator RG. The states xb(t) do not exceed their limits for any reference 

r(t). The stability analysis and the analysis of the disturbance rejection for the control system 
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described above are analogous to the ones given in section 5.2.1. It easy to see how one could 

combine the operators EG and RG to obtain a control structure similar to the one described in 

section 5.3.1. In this case of course the objective would be to prevent the x,(t) states from 

violating their limits. 

7.5 Concluding Remarks 

In this chapter it has been shown that the operators EG and RG can be used to design 

control systems when the controls saturate in magnitude andor rate and when it is desired to 

keep certain states of the plant bounded. The techniques used to design the control system are 

similar to the ones used when only magnitude saturation is present. 

Also it has been shown how to design control systems when combinations of rate and 

magnitude saturation are present. In a similar manner one can design control systems when in 

addition to magnitude and rate saturations certain states of the plant are not to exceed specific 

limits. 

With operators EG and RG if integrators are present in the control system the integrators 

never windup. Also the nonlinear response is similar, to the extent possible, to the linear one. 

The simulations in this chapter verify the expected behavior of the control system. 
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CHAPTER 8 

CONCLUSIONS AND SUGGESTIONS FOR FUTURE RESEARCH 

8.1 Conclusion 

Saturations exist in almost every physical system. In this thesis, the effects of multiple 

saturations present in a closed loop control system were studied extensively. The multiple 

saturations can include limits on the control magnitudes, limits on the control rate and/or limits 

on certain states of the plant. 

In the presence of saturations the stability and performance of a linear control system can 

suffer. For example, a linear control system that is closed loop stable can become unstable 

when saturations are present for certain references and disturbances. Saturations can also affect 

the performance of the control system by introducing reset windups and by changing the 

direction of the control signal. Large overshoots and oscillatory outputs are the consequence. 

The control literature reflects that a significant amount of effort has gone into finding 

solutions for the reset windup problem in SISO systems. This has resulted in many heuristic 

reset antiwindup strategies which have proved successful when used in SISO systems. Of 

course, problems due to saturations are amplified in the MIMO case. However, there has been 

no systematic method for designing MIMO control systems in the presence of multiple 

saturations. 

In this thesis a new systematic control design methodology has been introduced for 

systems with multiple saturations. The methodology can be applied to stable and unstable open 

loop plants with magnitude and/or rate control saturations and to systems in which state limits 

are desired. The study was done in two parts, the analysis part and the design part. 

In the analysis part, a new stability result was derived which allows the designer to 
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specify the sizes of the exogenous disturbances and/or references so that the closed loop 

system remains stable. In the analysis part it was also discussed how saturations can affect 

negatively the performance of the nonlinear system and new performance criteria were 

introduced for judging the quality of these designs. 

In the design part, a systematic methodology was introduced for the design of control 

systems with multiple saturations. The idea was to introduce a supervisor loop; and when the 

references and/or disturbances are "small" enough so as not to cause saturations, the system 

operates linearly as designed. When the signals are large enough to cause saturations, then the 

control law is modified in such a way to preserve, to the extent possible, the behavior of the 

linear control design. 

The main benefits of the methodology are that it leads to controllers with the following 

properties: 

(a) The signals that the modified compensator produces never cause saturation. 

(b) Possible integrators or slow dynamics in the compensator never windup. 

(c) The closed loop system has inherent stability properties. 

(d) The on-line computation required to implement the control system is feasible. 

The main disadvantage of the methodology is the off-line computational requirements for 

high dimensional systems. 

These properties were demonstrated in numerous simulations which included models of 

the F8 aircraft (stable), the F16 aircraft (unstable) and an academic example. In addition, the 

methodology was contrasted against extensions of SISO reset antiwindup strategies to MIMO 

systems. The advantages of the new design methodology were clearly demonstrated. 

8.2 Future Research Directions 

The extensions of this research lie primarily in the areas of implementation and applications 
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of the new design methodology. 

At fmt, the new design methodology should be applied to a few realistic examples to 

access the benefits and the drawbacks of the resulting controllers. Applications of systems with 

multiple saturations include: aerospace systems, undersea vehicles, nuclear reactors, process 

control systems etc. For example in the case of nuclear reactors, the absolute necessity of 

keeping the states of the reactor bounded makes the use of the new design methodology 

appealing. 

For control systems with cornpensaton that have large number of states, the calculation of 

the function g(x) (chapter 3) can be computationaly demanding. More research is needed to 

defme new and more efficient ways of computing and approximating the function g(x). In 

addition, the effects of an approximate g(x) on the performance of the control system has to be 

further examined. 

For open loop unstable plants the new control design methodology requires the 

measurement of the states of the plant. It may be possible to estimate these states, and use these 

estimates for computing p(t), instead of the real state measurement. A new study is needed to 

determine the effects of the state estimator on the computation of p(t), and the effects of this 

approximation on the performance of the control system. In addition, more research is needed 

to determine precisely the effects of unmodelled dynamics andor modelling errors on the 

computation and performance of the Reference Governor (RG). 

Finally, the use of the Error Governor and the Reference Governor can be expanded to 

shape the response of a control system. For example, one could use the EG and/or RG to 

modify and shape the overshoot of a control system. Further research in this area will 

determine all such potential uses of the EG and RG operators. 
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